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ABSTRACT

An experiment on zero pressure gradient turbulent
boundary layers at low Reynolds number has been
carried out. By combining LDA techniques and
similarity analysis of the RANS equations the effects
of upstream conditions on the downstream develop-
ment of the mean flow and the turbulent quantities in
the outer part of the boundary layer were investi-
gated. It was found that for fixed upstream condi-
tions, the mean velocity profiles collapsed to a single
profile even though the local Reynolds number, Ry,
did not reach higher values than about 4000. The
normal Reynolds stress profiles showed a marked
dependence on local Reynolds number but also a
tendency to collapse at the higher end of the local
Reynolds number range considered. The Reynolds
shear stress profiles depended strongly on local
Reynolds number and showed only a weak ten-
dency to collapse at higher Reynolds numbers. The
effects of different upstream conditions were investi-
gated by varying free stream speed and position and
diameter of a trip wire. The mean velocity profiles
and the streamwise normal Reynolds stress showed
no dependence on the upstream conditions within the
constraints of this experiment. The wall-normal
Reynolds stress and the Reynolds shear stress, how-
ever, revealed a clear dependence on the position of
the trip wire. Only the Reynolds shear stress showed
a dependence on the trip wire diameter.

INTRODUCTION

Flat plate turbulent boundary layers have been
studied for a very long time. Early investigations
were made by, e.g., von Kérman (1930) and
Millikan (1938), where the concept of similarity
solutions to the turbulent boundary layer problem
was introduced. Clauser (1954) extended this work
to include boundary layers with pressure gradient.
Basic experimental investigations were done by,
e.g., Wieghart (1943) and Smith and Walker (1959).
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Recent theoretical and experimental investigations
include, e.g., George and Castillo (1997), Osterlund
(1999), and DeGraaff and Eaton (2000).

The complete solution for the mean velocity field
for the idealized case of a perfectly flat, infinitely
thin plate, perfectly aligned with a non-turbulent
constant free stream can be expressed as
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where (U) is the ensemble average of the stream-
wise velocity component U, U, is the constant free
stream speed, §=5(xU,/v) is a boundary layer
thickness, v is the kinematic viscosity of the fluid
and x and y are coordinates in the streamwise and
wall-normal directions respectively. Similar expres-
sions can be developed for the Reynolds stresses.

As the local Reynolds number, R, =xU,/v, goes

to infinity, equation (1) loses its dependence on R,
so that asymptotically

@=L[l) @

U, -6

This is, in fact, the Asymptotic Invariance Principle
of George (1995).

The idealized case is, however, extremely difficult
to achieve in practice, since neither infinitely thin
plates, nor perfectly non-turbulent free streams exist.
In order to control the transition to the turbulent state
it has become common practice to use some tripping
device, like a thin wire or a sandpaper strip. This,
however, introduces new parameters into the
problem and the general solution must now be
written (for the case of a trip wire)
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where x, is the distance from the leading edge of
the plate to the trip wire and d,, is its diameter. A



possible dependence on other parameters, which
cannot be controlled, like free stream turbulence,
finite thickness of the plate and the shape of its nose,
has been indicated by an unspecified set of para-
meters, denoted by *. We refer in the following to
the complete set of parameters appearing in equation
(3), but not in (1), as the “upstream conditions” of
the flow field.

Even for different upstream conditions it is gener-
ally assumed that at sufficiently high local Reynolds
numbers, R,, the mean velocity field reduces to

equation (2). For smaller local Reynolds numbers
the dependence on the upstream conditions must be
retained. It is the purpose of this paper to
demonstrate how the mean velocity field and the
Reynolds stresses vary with both the local Reynolds
number and the upstream conditions for low to
moderate local Reynolds numbers and to
demonstrate that there is a tendency towards a
universal form as the local Reynolds number
increases. We will focus on the outer part of the
boundary layer, i.e., on the functional form (3).

THE EXPERIMENT

A low Reynolds number experiment was carried out
to test how the upstream conditions influence mean
velocity profiles and Reynolds stresses. The turbu-
lent boundary layer was 2-D, incompressible, steady
state on the mean, and the flat plate was smooth.
Details of the experiment are described below.

The Test Section

The measurements were carried out in the wind
tunnel L2 in the department of Thermo and Fluid
Dynamics at Chalmers University of Technology.
The test section is 3 m long, 1.8 m wide and 1.25 m
high. The corners are provided with fillets, slightly
decreasing in size in the downstream direction to
compensate for boundary layer growth on the wind
tunnel walls. The wind tunnel is of conventional
closed-loop design, equipped with turning vanes in
all four corners with a number of honeycombs and
screens. The contraction ratio is 5.6:1 and the free
stream turbulence level is about 0.1%.

The experiment was made in two parts, both used
the same flat plate, 2.5 m long, 1.25 m wide and 5
mm thick. A specially designed leading edge
ensured that separation was avoided. In the first part
the plate was mounted horizontally in the wind
tunnel with the tip of its nose 200 mm downstream
of the start position of the measuring section of the
wind tunnel, and at a distance of 540 mm from the
top wall of the wind tunnel. The boundary layer was
tripped using a 2mm diameter wire, positioned at a
distance of 150 mm from the leading edge and
across the entire width of the plate. The free stream
speed was varied from 5 m/s to 20 m/s. In the second
part of the experiment the plate was mounted
vertically at the centerline of the wind tunnel. Now
also the position of the trip wire and its diameter
were varied.
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The LDA probes

Two LDA probes were used. One probe was used to
emit four beams of blue and green light from an
Argon-ion laser. Its focal length was 1200 mm and it
was equipped with expanders to reduce the diameter
of the measuring control volume to about 58 pm. A
second probe was used to collect side-scattered light
from the measuring control volume created by the
2D probe. With this side-scattering arrangement the
measuring control volume was nearly spherical. For
the Reynolds number range considered in this
investigation the viscous length scale was estimated
to vary from about 70 pum at the lowest to about 24
um at the highest Reynolds numbers. Glass windows
on the side and top walls of the wind tunnel
facilitated optical access to the test section. In the
second part of the experiment some profiles had to
be obtained using backscatter, due to optical
problems with these windows.

The scattered light was detected and processed by
two Dantec BSA processors using the Burstware
3.22 program. With the present geometry of the
beams the normal velocity component was measured
in a direction slightly side-ways, making a small
angle o to the normal, i.e., it was also somewhat
sensitive to the transverse velocity component. The
beam angles were measured to within 1°. The mean
velocity in the normal direction could be corrected
with very good accuracy based on the assumption
that the transverse mean velocity is zero.

A potentially worse problem is created if the
measurement of the normal velocity component is
also sensitive to the velocity in the mainstream
direction. This problem was avoided by performing
test measurements very close to the wall (y* =2),
where the wall-normal velocity component is very
close to zero. The probe was turned around its own
axis until no mean velocity in the wall-normal
direction could be detected.

Accurate determination of the distance between
the measuring control volume and the wall is crucial,
especially very close to the wall. The point of zero
distance was determined by traversing the measuring
control volume down to the wall, and seeking the
vertical position where the scattering from the wall
itself attained a maximum value. The correct wall-
normal position could be determined to within 10
um in this way, corresponding to 0.3 viscous wall

units (y* =0.3) at a free stream speed of 10 m/s.
This process was repeated for each axial position.

RESULTS

Effects of the local Reynolds number

In figures 1-4 mean velocity profiles and Reynolds
stress profiles are shown. The normal Reynolds
stresses are shown as rms values. In these figures the
upstream conditions are held constant,



R, =x¢Us/v = 100 000, x,/d,=150. Only the
local Reynolds number, R, = xU,/V, is varied.

The mean velocity profiles are hardly affected at
all by the local Reynolds number, c.f. figure 1. Only
for the lowest local Reynolds numbers a small
deviation can be observed. We conclude that, for
fixed upstream conditions, the mean velocity profiles
approach the asymptotic profile already at very low
local Reynolds numbers.
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Figure 1: Mean velocity profiles obtained for R, ~
100000, x,/d,= 150.

Profiles of the rms values of the stream wise velocity
fluctuations, u,,,, are on the other hand strongly

affected by the local Reynolds number, figure 2. The
peak value close to the wall is the highest for the
lowest local Reynolds number. For these profiles the
position of the peak appeared at a dimensionless
position farther away from the wall. One should also
note that the difference between the different profiles
extend almost all the way out to the free stream.
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Figure 2: u,, profiles obtained for R, = 100000,
Xo/d,=150.
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The profiles for the rms values of the wall normal
velocity fluctuations, v,,,, are shown in figure 3.
They show a behavior similar to those of u,,,.
There is a strong dependence on the local Reynolds
number for the lowest ones. The peak values found
here are lower than those found for the stream wise
fluctuations and occurs farther away from the wall.
As for u,,,, the position of the peak moves closer to
the wall, in dimensionless coordinates, as the local
Reynolds number increases.
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Figure 3: v, profiles obtained for R, = 100000,
Xo/dy= 150.
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Figure 4: <uv> profiles obtained for R, =~ 100000,
Xo/dy=150.

The Reynolds shear stress profiles, <uv), are shown

in figure 4. The variation with the local Reynolds
number is evident. For the smallest local Reynolds
numbers a very strong negative peak is seen close to
the wall. This peak appears at about the same
position as the peak for v,,. The behavior for
increasing local Reynolds numbers is also similar,
the magnitude of the peak value decreases and the
peak position moves closer to the wall in
dimensionless coordinates.



A careful inspection of figures 2-4 shows that the
profiles for each of the Reynolds stresses tend to
cluster together at higher local Reynolds numbers,
thus, they seem to approach asymptotic profiles. For
the fairly low local Reynolds number range reported
here, neither the u,,,, v, nor the (uv) profiles can

be claimed with certainty to have reached their
asymptotic forms. Especially the (uv) profiles

continue to vary throughout the range of local
Reynolds numbers investigated here.

Effects of the trip wire position

Now we investigate the effects on the mean velocity
and Reynolds stress profiles when the global
Reynolds number based on the trip wire position,

R, =xUy/v, is varied, while the Jocal Reynolds

number, R, =xU,/v, and the normalized wire
diameter, x,/d,, are kept constant. Only a limited

variation of global Reynolds numbers was covered
in the present experiment.

Figure 5 shows the mean velocity profiles. As
before, hardly any variation can be detected. It
appears that the global Reynolds number R,

doesn’t influence the mean velocity profiles at all. It
should be stressed, however, that the empirical
evidence presented here is far from sufficient to
draw a final conclusion.
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Figure 5: Mean velocity profiles for different global
Reynolds numbers, R, . x,/d,= 150 in all cases.

Figure 6 shows the profiles for the rms values of the
stream wise velocity fluctuations for the same
variation of local and global Reynolds numbers as in
the previous figure. Although the global Reynolds
number, R, , varies by a factor of two no differ-

ences can be observed. We must conclude that a
variation of the global Reynolds number, R, ,

affects the u,, profiles much less than the local
Reynolds number variation does.
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Figure 6: u,,, profiles for different global Reynolds
numbers, R, . xo/d,= 150 in all cases.

Figure 7 shows two pairs of profiles of the rms val-
ues of the wall-normal velocity fluctuations. In each
pair the local Reynolds number is approximately the
same but the global Reynolds numbers, R, , are

different. Contrary to the previous figures, here we
can clearly see an effect of the global Reynolds num-
ber, RXO. Note that both profiles for the lower value

of R, lie above the profiles for the higher value.
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Figure 7: v, profiles for different global Reynolds
numbers, R, . xo/d,= 150 in all cases.

Figure 8 shows two pairs of profiles of the Reynolds
shear stress. Each pair has approximately the same
local Reynolds number but different global Reynolds
numbers, R, . As for the wall-normal velocity

fluctuations we observe a dependence on the global
Reynolds number. Note that the data points for the
higher global Reynolds number fall above the data
points for the lower ones regardless of local
Reynolds number.
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Figure 8: (uv) profiles for different global Reynolds
numbers, R, . xo/d,= 150 in all cases.

In the investigation of the effects of trip wire posi-
tion, the global Reynolds numbers, R, , was varied

by a factor of two, while the local Reynolds number
variation was minor. The range of local Reynolds
number is clearly too small to permit conclusions
about possible asymptotic profile shapes. This holds
true for any of the u,,,, v,,,, and (uv) profiles.

Effects of the trip wire diameter
It is also of interest to find out to what extent the
ratio x,/d, affects the various boundary layer pro-

files. Figures 9-12 show profiles of mean velocity,
Upms> Vyms and (uv) for a constant global Reynolds

number, R, = 100000. Results are shown for three

pairs of data. Within each pair of data the local Rey-
nolds number is constant, but the ratio x,/d,is
different.

In figure 9 the mean velocity profiles for three sets
of data with different x,/dratio are presented. All

six profiles fall on top of each other, indicating that
the mean velocity profile is rather insensitive to
variations in this ratio. As before a universal profile
is obtained

Figure 10 shows profiles of the rms values of the
streamwise velocity fluctuations for two values of
the ratio x,/d,. It is virtually impossible to distin-
guish the different profiles from each other,
indicating that these profiles are not sensitive to a
change in this ratio. Close to the wall a slight
broadening of the data can be seen. It is, however,
not clear if this is mainly an effect of the x,/d,
ratio or the variation in local Reynolds number

Figure 11 shows how the profiles of the wall-
normal velocity fluctuations are affected by the ratio
xo/dy . No differences can be seen, which is some-
what surprising, since these profiles have shown a
definitive sensitivity to both local and global
Reynolds number variations. The deviations seen in
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Figure 9. Mean velocity profiles for different x,/d,,
ratios. R, =100000. Three pairs of data are shown.
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Figure 10. u,, profiles for different x,/d, ratios.
R, = 100000. Three pairs of data are shown.

Uo
0.08 Re-1073  x0/do
. 662.9 175
0.07
* 662.9 150
0.06 [ 926.6 175
a 926.6 150
0.05
1314. 75
0.04 ‘ . 1314. 150
‘u
0.03 ’ﬂ
0.02 1‘&
1,
0.01 % '“ momome W
. . .
LA XIS Ak Ak y
0.5 1 1.5 2 2.5 3 695

Figure 11. v, profiles for different x,/d ratios.
R,,=100000. Three pairs of data are shown.
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the free stream are most likely due to measurement
noise.

Figure 12, on the other hand, shows clearly that
the Reynolds shear stress profiles are affected by a
variation in the x,/d, ratio. For each of the local
Reynolds number values considered here, the
Reynolds shear stress profiles for the higher value of
xo/d, fall below the profiles for the lower value.
The difference between the profile pairs decreases
for increasing local Reynolds numbers. The
magnitude of the Reynolds shear stress is seen to
decrease both with increasing local Reynolds
number and with decreasing x,/d, ratio. The
Reynolds shear stress, thus, displays a dependence
on the x,/d, ratio, but this effect is intimately

mixed with the effects of the local Reynolds number.
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Figure 12:. (uv) profiles for different xy/d,, ratios.
R, = 100000. Three pairs of data are shown.

CONCLUSIONS
The main results from this low Reynolds number
investigation are summarized below:

e The mean velocity profiles showed a weak
dependence for low values of the local Reynolds
number. However, already at a local Reynolds
number of about 4000 an asymptotic profile was
obtained. Within the limits of this experiment no
dependence on either the trip wire position or its
diameter could be detected.

e The stream wise velocity fluctuations, u,,,,
showed a dependence on the local Reynolds
number even for fixed upstream conditions.
These profiles, though, showed a tendency to
approach an asymptotic profile for the higher
values of the local Reynolds number considered
in this study. No dependence on either the trip
wire position or its diameter could be found.

e The wall-normal velocity fluctuation, v,,,
also showed a dependence on the local
Reynolds number, particularly for the lowest
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values of R,. A tendency towards an asymptotic

profile was also found, even for the low local
Reynolds numbers studied here. Contrary to
U,,» however, v, showed a clear dependence
on the position of the trip wire, but not on its
diameter. This dependence did not show any
tendency to decrease with increasing local
Reynolds numbers, indicating a possible
dependence on upstream conditions also of the
asymptotic profile.

e For the Reynolds shear stress component,
(puv), the results were similar to v,,,.. A strong

dependence on the local Reynolds number was
found, particularly for low values of R,. For
this variable only a very weak tendency towards
a universal profile could be observed. This
profile, if it exists, must be reached at
significantly higher local Reynolds numbers
than those investigated in this study. The
Reynolds shear stress was found to be sensitive
to variations in both the trip wire position and
its diameter.
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