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ABSTRACT

Velocity derivatives play an outstanding role
in the dynamics of turbulence for a number of
reasons. Their importance became especially
clear since the papers by Taylor (1938) and
Kolmogorov (1941). Taylor emphasized the
role of vorticity, whereas Kolmogorov stressed
the importance of dissipation, and thereby of
strain.

The field of velocity derivatives is very sen-
sitive to the non-Gaussian nature of turbu-
lence or more generally to its structure, and
hence reflects a lot of its physics. From the
momentum equation it follows that the whole
flow field is entirely determined by the field of
vorticity, or by that of strain. Therefore, in
Lagrangian description, in a frame following a
fluid particle, everything happening in its prox-
imity is characterized by the velocity gradient
tensor A;; = Ou;/dz; (Tsinober, 2001).

We report the first attempts to use the par-
ticle tracking technique for studying the field
of velocity derivatives and material elements.
The nonintrusive nature of this method makes
it especially suitable for this purpose.

FACILITY AND METHOD

A quasi-isotropic turbulent flow field is pro-
duced inside a 320 x 320 x 175mm? water
tank (figure 1). Two 4 by 4 arrays of cylin-
drical rare earth sintered strong permanent
magnets (42mm in diameter) were mounted
on the two opposite side walls of the tank.
The magnets are arranged in such a way that
positive and negative magnetic fluxes alter-
nate, forming a chessboard pattern. Copper
plates placed in front of each array serve as
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Figure 1: Schematic of the experimental facility and coordi-
nate system (z,y, z).

electrodes. The tank is filled with an aque-
ous copper sulphate (CuSOy) test fluid. A
DC electric current of 9A is applied and from
the interaction of the current density, j, with
the magnetic field, B, Lorentz forces, f;, are
induced, according to f; = j x B. They pro-
duce a non-oscillating swirling motion in the
proximity of each magnet. Within a few sec-
onds these circulations cause a three dimen-
sional (3D) time dependent flow region with a
front that quickly propagates towards the cen-
ter resulting in a turbulent velocity field with
zero mean flow and fluctuations, u;, of order
0(0.01m/s), occupying the entire volume of
the tank. The flow is seeded with neutrally
buoyant particles of 40-60 microns in diam-
eter. Four synchronized video cameras with
a resolution of 480 x 640 pixels? are focused
on a volume of 15 x 20 x 20mm® and record
frames at a rate of 30Hz over a time inter-



val 7 = 30sec. A three dimensional Particle
Tracking Velocimetry (3D-PTV) analysis of
the images, extensively described in Stiier et al.
(1999), determines the position of each particle
using a stereometric method and links particles
of consecutive images to trajectories.

From the 3D-PTV we get velocities, u, and
Lagrangian accelerations, a, at random parti-
cle locations, r, where trajectories range over
five or more time steps. Using an interpola-
tion scheme, which is based on a series of the
M’4 formula (Monaghan 1985) the Lagrangian
quantities u(r) and a(r) are interpolated on a
regular grid of 16 cells occupying a volume
of 15° mm? into a Eulerian frame of reference.
This results in differentiable, interpolated and
time dependent velocity and acceleration fields
which are smooth in regions with low particle
seeding density and well resolved down to the
Kolmogorov scale, 7, in regions where the par-
ticle seeding density is high enough. All results
presented here are taken from points only that
have a ’relative divergence’, defined by expres-
sion (1), smaller than 0.1.
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Typically 15% (~ 600 grid points/time step) of
the regular grid points and 15% (~ 40 particle
points/time step) of the particle points meet
this criteria. Results denoted with M'4 re-
fer to the procedure described above, whereas
the subscript PTV denotes results obtained di-
rectly from 3D-PTV.

RESULTS

We note here that all the following results
are in good agreement - both qualitatively
and in many ways quantitatively - with those
known from other physical and numerical ex-
periments, see Kholmyansky et al. (2001a,b)
and Tsinober et al. (2001) and references
therein.

Accelerations and related matters

In order to check the validity of the inter-
polation scheme we start with a comparison
between Lagrangian velocities, upry, and ac-
celerations, apry, obtained directly from 3D-
PTYV data and the same quantities, upsr4, ana,
in the Eulerian frame of reference obtained
from M’4 interpolation. Since the rate of dis-
sipation of kinetic energy, €, can be calculated
from € = — (u-a) (Ott and Mann 2000), one
can expect that both, the probability den-
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sity function (PDF) of u-a and the PDF of
cos (u - a) are negatively skewed as it is clearly
visible in figures 2 and 3. From the similar

L 1 L L i i L i
-5 -4 -3 -2 -1 1 2 3 4 5

o
ua (mzlsa)

Figure 2: PDF of u - a showing a strongly non-Gaussian
distribution.
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Figure 3: PDF of cos(u, a) for PTV and M4 results.

behavior of both PDF’s reasonable agreement
between PTV and M’4 results is concluded.
Moreover, the PDF’s of cos (u -a) show large
parallel and anti-parallel alignments and rela-
tively small correlations between u and a. For
these reasons we can, at best, hope for order of
magnitude accuracy for the value of €. Table
1 shows values for the dissipation rate evalu-
ated from — (u - a) for PTV and M’4 compared
with the value obtained from 2v (s;;s;;) based
on M’4, where s;; = 1/2(0u;/0z; + Ou;/0%;)
is the rate of strain tensor (see Tennekes and
Lumley 1972).

From the average of these values, ¢ ~
5. 107%, characteristic turbulence scales of
the flow can be calculated, namely the Kol-
mogorov length and time scales, n = (v3/g)1/4
and 7, (v/e)/? as n =~ 0.7Tmm and
T, =~ 0.5s respectively, the Taylor microscale,
Ar (150 (u?) /e)'/? as A, 7mm and
with ug = (1/3 (u?))'/? as characteristic ve-
locity, up = 0.01 m/s, we get the Taylor mi-

p— ~



2v (sij5ij)
6.2:10-6

€ -(u-a)ppy  -(u-a)py
m? /s> 5.8-10-6 3.2:10-6

Table 1: Dissipation rate ¢ evaluated from — (ua) and
2v (s,‘js,‘j).

croscale Reynolds number, Rey = ug),/v as
Rey =~ 60. The total (Lagrangian) accelera-
tion, a =Du/Dt, can be expressed by the local
acceleration, a; = du/dt, and the convective
acceleration, a, = (u-V)u, in the Eulerian
frame of reference. Figure 4 shows the PDF of
the cosine of the angle between local and con-
vective acceleration. The strong tendency for
anti-alignment due to mutual (statistical) can-
cellation between a; and a, is seen quite clearly
by the strong negative skew of the PDF. One
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Figure 4: PDF of cos(a;,ac) showing strong anti-alignment
between a; and a..

more manifestation of the strong cancellation
between a; and a. is a smaller intensity and a
distribution of a more close to a Gaussian as
compared to a; and a, (table 2, figure 5).

(a-a)  {a-ay) {ac-ac)
m?/sT 2.1-10-4 42104 5.8.10-4

Table 2: Lagrangian, local and convective mean accelera-
tions.

These results are in good agreement
with those obtained in field experiments
(Kholmyansky et al. 200la,b) and via DNS
(Tsinober et al. 2000).

Vorticity and strain related quantities and re-
lations

The rate of strain tensor s;; can be expressed
by its eigenvectors, \;, and their correspond-
ing eigenvalues, A;, where A; > Ay > As.
The PDF’s of the A; are shown in figure 6.
The result is consistent with recent results ob-
tained by Kholmyansky et al. (2001a,b) and
references therein. We especially mention the
typical PDF of the intermediate eigenvalue, As,
which is distinctly positively skewed.
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Figure 5: PDF of a - apry, a-apr4, a1 - a; and ac - ac.
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Figure 6: PDF’s of the eigenvalues of the rate of strain ten-
sor, s;; , A1, A2 and Az (showing the positively skewed
distribution of Az).

Figure 7 shows the skewed PDF’s of enstro-
phy, w?, production, with the vorticity of the
velocity field, w = curl u, and strain produc-
tion terms, w;w;s;; and —4/3s;;5;x5k;.

Although they are skewed similarly, their re-
lationship is nonlocal as is seen from their joint
PDEF /scatter plot (figure 8).

The so called R — @ joint PDF /scatter plot
is shown in figure 9.

Here, Q@ = 1/4{w? — 2s%}, and R =
—1/3{sijsjkski + (3/4)wiw;s;;} are the second
and the third invariants of the velocity gradient
tensor Ou;/0zk. A typical ‘tear drop’ pattern,
similar to that obtained from numerical simu-
lations, e.g. Martin et al. (1998) and Chacin
and Cantwell (2000), is obtained from the ex-
perimental data.

Vorticity versus strain

One of the basic manifestations of preferen-
tial vortex stretching over vortex compression
is the positive rate of enstrophy production,
(wiw;sij) > 0, shown in figure 7. It results
from the preferential alignment between w and
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Figure 7: PDF’s of w;w;s;; and —4/3 s;s;55k; showing
similar behavior.
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Figure 8: Joint PDF/scatter plot of w;wjss; and

—4/3s;;5;x5k; showing strong non-locality.

the vortex stretching vector, W = w;s;;. Fig-
ure 10 shows that the PDF of cos(w, W) is in-
deed strongly positively skewed. Moreover, the
rate of enstrophy production, w;w;s;;, becomes
stronger in regions of higher strain, s> > 2 (s?)
and it remains positive even in regions with
low strain, s? < (s?) in agreement with previ-
ous results, see Kholmyansky et al. (2001a,b)
and references therein.

The alignments between vorticity, w, and
the eigenframe, A;, of the rate of strain tensor
s;; are shown in figure 11 and again exhibit the
well known strong tendency for alignment be-
tween w and the eigenvector Ay, corresponding
to the intermediate eigenvalue, A;. The com-
bined effect of the alignments between w and
A; and the behavior of A; leads to quite pecu-
liar contributions to the mean enstrophy pro-
duction (w;w;s;;) from the three terms associ-
ated with each A;, w;wjs;j = w?Ay cos?(w, Ag)
(table 3).
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Figure 9: The R — Q joint PDF/scatter plot with the dis-
criminant, D, of A;j equal to zero, D = (27/4)R? + Q3.
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Figure 10: PDF’s of the cosine of the angle between vorticity
and the vortex stretching vector, cos(w, W) .

The largest contribution to (w;w;s;;) is as-
sociated with the first term, Ay, in spite of the
preferential alignment between w and Ag. This
can be explained by the facts that the magni-
tude of Ay is much smaller than the magnitude
of Ajand that the eigenvalue Ay takes both pos-
itive and negative values (figure 6) (Kholmyan-
sky et al. 2001a). Similarly the largest contri-
bution to vortex stretching (W?) comes also
from the term associated with A; (table 3).

Material elements versus vorticity and
strain.

It is well known that there is a preferential
material line stretching in any (not necessarily
real, e.g. Gaussian) random velocity field, see
references in Tsinober (2001). This is shown by
the positive value of (r;r;s;;/r?) given in table
4. Also in table 4 the values for the rates of
relative vortex line stretching are given for the
mean, weak and high intensities of vorticity.
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Figure 11: PDF’s of the cosine of the angle between w and
the eigenvectors A;.
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Figure 12: PDF’s of realtive vortex- and material line
stretching (w,'w_.,‘sij/w2, r,'rjs,']'/rz).

<w2A1 cos?(w, \ )> <w2 As cos? (w, /\2)> (;2A3 cos? (w, >\3)>

1.79 0.50 -1.29

<w2A% cos?(w, \; )) <w2 AZ cos? (w, A2 )L <w2A§ cos? (w, /\3)>

0.50 0.11 0.39

' !
18k ; : Lt { 6= coswwiei)

Table 3: Contributions of terms associated with A; to mean
enstrophy production and vortex stretching vector.

(%} ol w<(w) w>(w) (I—’%s—’—’>
s—! 0.09 0.06 0.13 0.07

Table 4: Relative vortex and material line stretching.

As all values of table 4 are positive, the
PDF’s of the same quantities shown in figure
12 are also (slightly) positively skewed just like
the PDF of cos(r, W"), W/ = r;s;; shown in
figure 13.

Moreover, the PDF’s of rr;s;; and
cos(r, W") show a distinct compression and
stretching region and strong anti-parallel and
parallel alignment respectively. Thus they dif-
fer significantly from the PDF’s of w;w;s;; and
cos(w, W) which do not show this bimodal
characteristic but have only a tendency to-
wards stretching and parallel alignment.

" A new aspect of material line stretching
is shown in the PDF’s of cos(r,A;) (figure
14). Strong tendencies for alignment are ob-
served between r and the eigenvectors Ajand
As. The two minima of the PDF’s of cos(r, A;)
and cos(r, A3) and the strong normal orien-
tation between r and A, suggest an almost
"binary’ state of r, being either stretched or
compressed. This is in contrast with the align-
ment of w with the eigenframe A; shown in
figure 11 where the strongest alignment is ob-
served between w and A,.

Vortex lines are dynamically active. Their
behavior is different from that of material lines,
even when they are identical at one instant of
time. A vortex line and a material line which
initially are aligned, disalign faster than two
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Figure 13: PDF’s of cos(r, W") and cos(w, W).

material lines. With « as the angle between a
vortex line and a material line and 3 as the an-
gle between two material lines respectively, this
is demonstrated in figure 15 showing a stronger
rate of change of «, || Da/ Dt||, compared to the
rate of change of 8, || D3/ Dt||, regardless of the
initial alignment.

CONCLUDING REMARKS

We have demonstrated that there is a large
potential in using the 3D-PTV technique in
studying rather subtle physical effects in turbu-
lent flows associated with the field of velocity
derivatives. The main difference as compared
to ’conventional’ approaches is that one goes
in the ’reverse’ direction starting with a La-
grangian raw data set and deducing from it
the Eulerian flow properties. The Lagrangian
starting point will allow a monitoring of ge-
ometrical relations and quantities, such as
enstrophy, strain and their production rates,
along particle trajectories, as well as tracing
of vortex and material lines in time. This re-
quires however a higher quality of the raw data.
Therefore, the next task to be addressed in the
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Figure 14: PDF’s of cosines of the angles between r and
eigenvectors ;.
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Figure 15: The range of 90° was divided into 40 slots. For
each slot the average of the rate of change of the angle o and
B was taken and plotted over their initial alignment, where
o is the angle between a vortex and a material line and 3 is
the angle between two material lines respectively.

wake of this work is a more detailed classifica-
tion and characterization of the formed particle
clusters for which generally higher spatial res-
olutions can be obtained.
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