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INTRODUCTION

A scenario for bypass transition likely to oc-
cur in a flat plate boundary layer flow under
free—stream turbulence is studied. The distur-
bances at the leading edge of the flat plate
that show the highest potential for transient
energy growth consist of streamwise aligned
vortices. Due to the lift-up mechanism these
optimal disturbances are transformed down-
stream into elongated streamwise streaks with
significant spanwise modulation. The initial
disturbance that yields the maximum spatial
transient growth in a non-parallel flat plate
boundary layer flow was determined by An-
dersson, Berggren and Henningson (1999) by
applying the boundary layer approximations
to the three-dimensional steady incompressible
Navier-Stokes equations and linearizing around
the Blasius base flow. If the disturbance en-
ergy of the streaks becomes sufficiently large,
secondary instability can take place and pro-
voke early breakdown and transition, overrul-
ing the theoretically predicted modal decay. A
possible secondary instability is caused by in-
flectional profiles of the base flow velocity, a
mechanism which does not rely on the presence
of viscosity. Experiments with flow visualiza-
tions by for example Matsubara and Alfreds-
son (2001) have considered the case of transi-
tion induced by streaks formed by the passage
of the fluid through the screens of the wind-
tunnel settling chamber. They report on the
presence of a high frequency ”wiggle” of the
streak with a subsequent breakdown into a tur-
bulent spot.

In Andersson et al. (2001) Direct Numeri-
cal Simulations (DNS), using a numerical code
described in Lundbladh et al. (1999), are used
to follow the nonlinear saturation of the opti-
mally growing streaks in a spatially evolving
boundary layer. The complete velocity vector
field from the linear results by Andersson et
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al. (1999) is used as input close to the leading
edge and the downstream nonlinear develop-
ment is monitored for different initial ampli-
tudes of the perturbation. Inviscid secondary
instability calculations using Floquet theory
are performed on the obtained mean flows and
it is found that the streak critical amplitude,
beyond which streamwise traveling waves are
excited, is about 26% of the free-stream ve-
locity. The sinuous instability mode (either
the fundamental or the subharmonic, depend-
ing on the streak amplitude) represents the
most dangerous disturbance. Varicose waves
are more stable, and are characterized by a
critical amplitude of about 37%.

Here, also using DNS, we study the tran-
sition process resulting from the sinuous sec-
ondary instability. A velocity vector field
from the simulations presented in Andersson
et al. (2001) is used as inflow condition. In
those simulations a spanwise antisymmetric
harmonic volume force was added to the non
linear streaks to trigger their sinuous secondary
instability in order to check the linear stabil-
ity calculations. Here the saturated streaks,
vs, and the secondary instability mode, vq,
obtained filtering the velocity field at the fre-
quency w of the forcing, are introduced as
inflow condition by adding them to the Bla-
sius solution to give the forcing vector v =
vo+ Vs +Avge™?t. An amplification factor A is
used for the secondary instability to give tran-
sition within the computational box. The late
stages of the process are investigated and flow
structures identified. They are different from
the case of transition initiated by Tollmien-
Schlichting waves and their secondary insta-
bility (see Rist and Fasel 1995 as example) or
by-pass transition initiated by oblique waves
(Berlin et al. 1999). In these latter two scenar-
ios A-vortices with strong shear layer on top,
streamwise vortices deforming the mean flow
and inflectional velocity profiles are observed.
Berlin et al. (1999) speculated that the pattern



of A-vortices appearing is then independent on
the presence of Tollmien-Schlichting waves, but
depends only on the streawise streaks and the
oblique waves. These two are key elements also
in the present case, but a different spatial sym-
metry property of the amplifying disturbance
gives different flow structures. The present
case shows analogies with streak instability
and breakdown found in the near wall region of
a turbulent boundary layer (see Schoppa and
Hussain 1997 or Kawahara et al. 1998).

RESULTS

In this section we give an overview of the full
transition of a streamwise streak subjected to
sinuous secondary instability. Time averaged
statistics and Fourier analysis of the results
are presented while instantaneous flow struc-
tures are discussed in the next section. Our
simulation starts at Resx = 875 (z = 0) and if
not stated differently, in the results presented
the coordinates are made non dimensional us-
ing the inflow boundary layer thickness d5. The
computational box is 6.86 d; wide, correspond-
ing to one spanwise wavelength of the streak,
and 10.7 d; high. A simulation with the in-
let moved further downstream (Res = 1044)
is also performed to have some fully developed
turbulence within the computational box us-
ing the same number of modes. The length of
the boxes is 380 d5. 1440 x 97 x 72 spectral
modes are used respectively in the streamwise,
wall-normal and spanwise directions.

To extract information on the frequency
content of the flow, sixteen velocity field are
saved during one period of the secondary in-
stability mode. We then transform these ve-
locity fields in time and in the spanwise di-
rection to Fourier space and use the notation
(w,B), where w and (3 are the frequency and
spanwise wavenumber, each normalized with
the corresponding fundamental frequency and
wavenumber. The energy in some of the modes
is displayed in figure 1, where the zero fre-
quency mode represents the streak. The sec-
ondary instability mode (w 1) is present
at the beginning of the computation, while
the higher harmonics are excited as the flow
evolves downstream. The energy growth is ex-
ponential for a long streamwise extension and
the growth rate of the first harmonic (w = 2)
is twice the one of the fundamental secondary
instability, and similarly for higher frequencies
(not reported here), the growth rate is propor-
tional to the harmonic order.

It is interesting to note that the energy
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Figure 1: Energy in different Fourier modes (w,3) versus
the downstream position. Frequencies: zero (streak), one
(secondary instability), two (higher harmonic). — 8 =0, -
--f=1,---f=2.

content is of the same order for modes with
different spanwise wavenumbers but with the
same frequency. This result is different from
the one obtained when the same analysis is
applied to a case of transition initiated by
two oblique waves (Berlin et al. 1999) or
by Tollmien—Schilichting waves (Laurien and
Kleiser 1989; Rist and Fasel 1995). In these
cases nonlinear interactions are important to
select the modes dominating the transition
process, namely the streamwise independent
ones, while here streaks are induced from the
start and they develop to a highly nonlinear
stage before they become unstable to time de-
pendent disturbances; thus the harmonics in
the spanwise direction are generated during the
streak growth and are responsible for the large
spanwise shear of the flow. The instability
of such a flow is then characterized by modes
strongly localized in the spanwise direction so
that a number of wavenumbers [ is needed to
correctly capture them (see Andersson et al.
2001). The growth in the different harmonics
starts to saturate around position z = 200 and
soon the energy becomes of the same order for
the different w’s. From this point (z ~ 220) the
Fourier transform in time of the whole velocity
fields is no longer accurate since not enough
frequencies are resolved. In fact higher and
higher harmonics are excited until the energy
spectra fill out.

Mean velocity profiles at various locations
in the transitional zone are displayed in fig-
ure 2, where the wall normal coordinate is
made non dimensional with the local bound-
ary layer thickness ¢*. The evolution from
the laminar flow to a turbulent one can be
seen. At position z = 215 a strong inflectional
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Figure 2: Average streamwise velocity in outer coordinates
at different streamwise positions;z = 126: — (thin line),
T =185 ---,2 =215 - .-,z =268 -,z =399

(thick line).

mean profile is present exactly during the large
growth of the skin friction coefficient, not re-
ported here. In the outer part of the boundary
layer one can see an over—shoot of the velocity
before approaching the final value. The same
behavior of the mean flow was observed by Wu
et al. (1999) in their simulations of transition
induced by free-stream turbulence.
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Figure 3: Time averaged Reynolds stresses in outer coor-
dinates at different streamwise positions;z = 126: — (thin
line), x = 185: ---, . = 215: - - -, = 268: -+, z = 399:—
(thick line).

At the early stages of transition, the aver-
aging of the streamwise velocity provides in-
formation on the evolution of the streak dur-
ing the process, since the spanwise modulation
dominates in the rms values. These are dis-
played in figure 3 also for the other two velocity
components. In the experiments of Matsubara
and Alfredsson (2001) of transition induced by
upstream—generated grid turbulence the s
value attained by the streaky structure before
the breakdown is about 11 — 12%. In our case,
instead, the streak amplitude at the beginning
of transition is about 19%, but we do not have

81

a continuous forcing by the free-stream turbu-
lence which is able to locally nonlinearly trigger
the inflectional instability of the flow. How-
ever, the same qualitative behavior of the .,
is observed compared to the experiments, i.e.
the peak is sharpening, moving closer to the
wall and reaching values of approximatively
12 — 13%.

As the flow develops downstream, the rms
values of the wall normal and spanwise veloc-
ity components increase especially in the outer
part of the boundary layer, around y ~ 3. This
corresponds to the wall normal region where
the secondary instability is localized. One can
also note that the spanwise velocity fluctua-
tions are larger than the wall normal ones,
and a considerable value of wym,ms ~ 11% is
attained at z = 215. It is also interesting
to notice that at z = 268 the mean velocity
profile, figure 2, and the wu,,s are very close
to the turbulent ones, especially close to the
wall, but the v.,s and wyy,s are character-
ized by large values in the upper part of the
boundary layer. These oscillations represent
periodic structures, formed in the transition re-
gion which survive downstream.

0.3
0.25F
Pt [
A \
A\
0.2 d \
A\
\

0.15F W\

N

R\
01 \\\\

\§\Q \
\\\ ~
0.05 S,
0 10 20 30 40 50 60 70 80 90 100
y—i-
Figure 4: Time averaged non-dimensional turbulence kinetic
. __ +
energy production, P+ = —wot 2U7  near the wall. - - -:
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present simulations at Reg = 845 (z = 360), Reg = 875 (z =
375) and Reg = 910 (z = 400); —: Skote’s simulations at
Reg = 685.

Profiles of the time-averaged turbulence ki-
netic energy production normalized with wall
parameters are shown in figure 4 at the three
different streamwise locations within the tur-
bulent region and compared with the DNS data
of Skote (2001). Spalart (1988) noticed that his
DNS profiles of turbulent production at three
different momentum thickness Reynolds num-
bers are self-similar. He explained it with the
fact that the decrease of Reynolds stresses is
compensated by the increase of mean velocity
gradient for these relatively low Reynolds num-
bers. This seems to be true also in the present



case, since all the profiles show a maximum
of P* = 0.25 at y© = 12. The agreement in
the profile of the kinetic energy production let
us believe that the dynamics of turbulence is
active at the downstream end of our compu-
tational box. Thus the flow observed is still
influenced by the deterministic inflow condi-
tions and by the transitional process only in
the upper part of the boundary layer.

INSTANTANEOUS FLOW STRUCTURES

A three-dimensional picture of the sec-
ondary instability mode is displayed in fig-
ures 5 and 6. These are obtained from the
Fourier transformed velocity fields discussed in
the previous section, filtering at the fundamen-
tal frequency. The mode is characterized by a
streamwise wavelength A\, = 11.9 and a fre-
quency w = 0.43; only one wavelength A\, is
shown in the figures. Isosurface of positive
and negative streamwise velocity are plotted
in figure 5 to show the antisymmetry of this
kind of instability. The low speed region is lo-
cated around z = 0, where the fluctuations are
stronger. The result is a spanwise oscillation
of the low speed streak. The spanwise veloc-
ity, seen in figure 6, is in fact characterized by
alternating positive and negative values, with a
symmetric distribution of the disturbance with
respect to the streak.

As observed in a number of experiments and
numerical studies, see Le Cunff and Bottaro
(1993) as example, the sinuous instability can
be related to the spanwise inflectional points of
the mean flow. Andersson et al. (2001) have
shown that the secondary instability modes are
concentrated around the critical layer, i.e. the
layer of costant value of the mean field velocity
corresponding to the phase speed of the distur-
bance which is u = 0.81U, in the present case,
thus confirming the inviscid nature of the con-
sidered instability.

In figure 7 the instantaneous streamwise ve-
locity component of the perturbation is shown
in a longitudinal plane perpendicular to the
wall for z = 0, corresponding to the center
of the undisturbed low speed streak and in a
plane parallel to the wall, at y = 0.47. The per-
turbation velocity field is defined as the differ-
ence between the solution velocity field and the
mean value in the spanwise direction for each
value of z and y. It can be clearly seen that
the sinuous instability consists of harmonic an-
tisymmetric streamwise oscillations of the low
speed region.

In figure 7a) one can note that the pertur-
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Figure 5: Isosurface of positive (dark grey) and negative
(light grey) streamwise velocity component of the secondary
instability eigenmode. The coordinates are made non di-
mensional using the local boundary layer thickness.
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Figure 6: Isosurface of positive (dark grey) and negative
(light grey) spanwise velocity component of the secondary
instability eigenmode. The coordinates are made non di-
mensional using the local boundary layer thickness.

bation is first seen in the outer part of the
boundary layer. The disturbance moves then
towards the wall until the wall-shear is consid-
erably increased. At the end of the computa-
tional box some periodicity can still be seen in
the disturbance in the outer part of the bound-
ary layer, while close to the wall the flow is
now turbulent. In figure 7b) two streaks can
be seen within the computational box at the
end of the transition process, with a spacing of
about 130zT. The spanwise dimension of the
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Figure 7: Visualization of streaks breakdown using stream-
wise velocity component of the perturbation in a wall normal
z-y plane and wall parallel z—z plane. Grey scale from dark
to light corresponding to negative to positive values. The
flow is from bottom to top.  —y-plane at z = 0, z — z plane
at y = 0.47. 185 < z < 360 in the streamwise direction.

box is in fact for x > 350 less than 275 plus
units, larger than the minimal channel studied
by Jiménez and Moin (1991), in which a tur-
bulent flow could be sustained. On the other
hand, the computational box is apparently too
small to allow the formation of some of the
large structures present in the outer region.
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Figure 8: The flow field from the laminar to the turbulent
region. The x-values correspond to the range 185 < z < 360.
The light grey structures are the low speed streaks and the
darker ones are regions with low pressure. Contours level are
-0.14 for the steamwise velocity fluctuations and -0.014 for
the pressure for z < 268 and -0.0065 further downstream.
The streamwise scale is one third of the cross stream ones.

The flow field from the laminar to the turbu-
lent region is shown in figure 8. The light grey
isosurface represents the low speed streaks,
while the dark grey represents regions of low
pressure. These corresponds to strong rota-
tional fluid motions and are used to identify
vortices. Also visualizations using negative
values of the second largest eigenvalue of the
Hessian of the pressure (see Jeong and Hussain
1997) are performed and no relevant differences
are observed. The main structures observed
during the transition process consist of elon-
gated quasi-streamwise vortices located on the
flanks of the low speed streak. Vortices of alter-
nating sign are overlapping in the streamwise
direction in a staggered pattern and they are
symmetric counterparts, both inclined away
from the wall and tilted in the downstream di-
rection towards the middle of the undisturbed
low speed region. The strength and extension
of these vortices and the spanwise motion of
the low speed streak increase downstream be-



fore the breakdown. Towards the end of the
box the flow has a more turbulent nature and
more complicated low-pressure structures oc-
cur. It also seems that there is no connection
between the laminar and turbulent-region low
speed streak, since the streak is disrupted at
transition and those which appear downstream
are not a continuation from upstream.

In other studied transition scenarios (Rist
and Fasel 1995, Berlin et al. 1999), posi-
tive and negative streamwise vortices are also
present on the side of the low speed region
but they are not staggered in the streamwise
direction so that the typical A-structures are
seen. This is due to the different symmetry
of the streamwise vorticity of the fundamen-
tal secondary instability; in the present case
the vorticity disturbance is symmetric, while in
the varicose case, observed in the simulations
of oblique transition by Berlin et al. (1999),
the streamwise vorticity is antisymmetric.

The vortex structures present in a turbulent
boundary layer seem to be related to streak in-
stabilities. Waleffe (1997) found that the domi-
nating instability is sinuous and it is correlated
with the spanwise inflection of the basic mean
flow. Kawahara et al. (1998) and Schoppa and
Hussain (1997) also used a similar approach
and showed that the varicose mode is stable.
The identified structures show a close resem-
blance to the one detected in our transitional
boundary layer (Schoppa and Hussain 1997).
On the other hand, Skote et al. (2001) show
that the appearance of an unstable wall-normal
velocity profile is a precursor to the appearance
of horseshoe vortices, thus associated to vari-
cose instability of the turbulent streaks.
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