SHEAR-INSTABILITY IN POSTSTENOTIC ARTERIAL FLOWS

Francois Mallinger, Dimitris Drikakis*
Queen Mary, University of London
Engineering Department,

i London E1 4NS, UK
F.Mallinger@gmw.ac.uk, d.drikakis@gmw.ac.uk

ABSTRACT

The paper is concerned with instabilities
and transition-to-turbulence in pulsatile flows
through a stenosis. Our long term objective is
to obtain a better understanding of the flow
phenomena associated with diseases such as
atherosclerosis and stroke. This can poten-
tially help the development of better diagnos-
tic criteria and clinical detection techniques.
Using high-order Godunov-type methods and
advanced non-linear multigrid algorithms we
have performed three-dimensional simulations
of the pulsatile flow through a 75% stenosis and
investigate the details of the flow development
with particular interest in the poststenotic re-
gion. Our simulations reveal the formation of
a three-dimensional instability which leads to
a strongly disturbed flow extended up to 50-60
radius downstream of the stenosis. This flow
behaviour subsequently affects the wall shear
stress distribution.

INTRODUCTION

In the context of biofluid dynamics, the
computational study of flows through stenoses
is motivated by the need to obtain a better un-
derstanding of the impact of flow phenomena
on diseases such as atherosclerosis and stroke.
The flow phenomena occuring in stenotic ar-
teries include asymmetric flow separation, in-
stabilities, laminar-to-turbulent transition and
turbulence. These phenomena are also ex-
pected to have profound effects on the wall-
shear stress distribution. Past experimental
studies have shown that in pulsatile flows not
only regions of high wall shear-stress are im-
portant, but also regions of low wall shear-
stress can have important haemodynamic ef-
fects due to their rapid variations in space
and time (Ku et al., 1985; Caro et al., 1971).
A comprehensive review of past experimental
and theoretical studies has been presented by
Berger and Lou (2000).
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Another important issue in stenotic flows
concerns medical diagnosis. By analyzing the
noise generated by a poststenotic disturbed
flow it may be possible to localize artery con-
striction. Experiments have been performed
by Clark (1980) aiming at analyzing turbulence
produced by stenosis as well as by Khalifa and
Giddens (1981) aiming at relating the level of
disturbances of the poststenotic flow to the de-
gree of stenotic obstruction.

Although the above studies have con-
tributed towards a better understanding of
stenotic flows, the problem is far from being
well understood. To the best of the authors
knowledge, a computational study of three-
dimensional pulsatile flow, featuring instabil-
ities, transition and/or turbulence, through a
stenosis, has not yet been presented. Past
computational studies are mainly concerned
with steady and unsteady axisymmetric flows;
for example, we refer the reader to the re-
cent study by Stroud et al. (2000) in which a
numerical investigation of the flow in stenotic
axisymmetric vessels with different shapes was
presented.

In this paper our objectives are i) to study
the formation of instabilities and coherent
structures in pulsatile flows through a three-
dimensional stenosis, and ii) to examine the
effects of instability and laminar-to-turbulent
transition on the wall shear-stress, velocity and
vorticity fields.

PROBLEM DESCRIPTION

The stenosis model considered here is sim-
ilar to the one used by Khalifa and Giddens
(1981). This consists of an axisymmetric steno-
sis with reduction of 75 % in the cross-sectional
area (Fig. 1). The length of the pipe is 2D and
70D (D is the diameter of the pipe), upstream
and downstream of the constriction, respec-
tively. Our grid contains 250,000 cells; this
grid size was found to be a good compromise
between accuracy and computational cost.



The inlet streamwise velocity u;(r,t) is de-

fined by a perturbed parabolic profile
_ : |rly2

u;i(r,t) = [um+uasm(wt)+f(r, t)] [H—(E) ],
where the inlet centreline velocity is given by
the sum of the mean velocity u,, = 41cm/s
and the sine wave of frequency w = 27 and am-
plitude u, = 10cm/s (Fig. 1); r is the radial
vector with origin the centre of the pipe and R
is the radius of the pipe. The function f(r,t)
is a time-dependent white-noise perturbation
with amplitude equal to 20% of the centreline
streamwise velocity; similar perturbations are
also imposed to the other two velocity compo-
nents. No-slip boundary conditions are defined
on the walls of the pipe. At the outlet, the
second-order derivatives of the flow variables
are set equal to zero; the present length of
the pipe was found sufficient to provide in-
dependence of the numerical results from the
outlet boundary conditions. The instanta-
neous Reynolds number, based on the centre-
line streamwise velocity and the pipe radius, R,
has minimum and maxium values of 760 and
1245, respectively. The flow parameters corre-
spond to a pulsatile frequency number (Wom-
ersley number) a = R(w/v)Y/? = 9.87.
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Figure 1: The inlet velocity profile (top) and shape of the
stenosis used in the computations (bottom); the unit is the
radius of the pipe R. The contriction length is 4R.

COMPUTATIONAL MODELLING

In our study we have employed the three-
dimensional Navier-Stokes equations for an in-
compressible fluid. Although our computa-
tional code can handle both Newtonian and
non-Newtonian fluids, here we have assumed
the fluid to be Newtonian, a generally valid
approximation of the rheological behaviour of

blood in the larger blood vessels; additionally,
we have considered the arterial wall to be rigid.
The above two assumptions are introduced in
order to simplify the analysis of our simulations
and enable us to develop a gradual understand-
ing of the unstable transitional flow through a
stenosis.

Our computational code employs the fi-
nite volume approach and curvilinear co-
ordinates. The numerical algorithm is based on
high-order Godunov-type schemes (Drikakis,
2001) and a non-linear multigrid method
in conjunction with a TVD fourth-order
Runge-Kutta scheme for the time integration
(Drikakis et al., 1998). The continuity and
momentum equations are solved in a coupled
fashion via the dual-time stepping/artificial-
compressibility approach. The present method
allows large time steps to be employed with-
out degrading the stability of the numerical
solution. Therefore, 100 time steps per pul-
sation cycle were found to be sufficient for
obtaining the onset and development of the
three-dimensional instability. For more de-
tails regarding the numerical method, we refer
the reader to (Drikakis, 2001; Drikakis et al.,
1998).

ONSET OF THE INSTABILITY

Computations were performed for several
cycles until the instability has been fully estab-
lished!. The values of the flow variables are not
exactly the same across different cycles due to
the time-dependence of the flow perturbation
at the inlet, as well as due to the transitional
nature of the flow. In qualitative terms, how-
ever, the flow evolves in a similar fashion across
different pulsation cycles after the instability is
established.

Fig. 2 shows the isocontours of the stream-
wise velocity at different cross sections for ¢t =
0.2; this time is close to the end of the first
acceleration phase of the pulsation cycle. The
onset of the instability takes place inside the
stenosis region and at z = 2.5 (just down-
stream of the constriction) the instability has
already been established; this can be seen as a
breaking of the flow symmetry? in the velocity
contours in the cross-sectional plane (Fig. 2).
At z = 2.5, the breaking of flow symmetry
is associated with the formation of a vorti-
cal structure on the upper part of the cross

INine to eleven cycles were found sufficient for obtaining the
onset of the instability as well as its spatial growth.

2Symmetry-breaking bifurcations have also been investigated
in the past in the context of two-dimensional suddenly expanded
flows (Drikakis, 1997).
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section. The instability spreads further down-
stream resulting in additional vortical struc-
tures (z = 7.5 and z = 17.5 in Fig. 2). These
structures emerge from the near-wall region,
grow further downstream and occupy most of
the cross-sectional area. Closer to the stenosis
region the breaking of the flow axisymmetry
is primarily due to intense streamwise changes
of the flow. Further downstream, e.g. at
z = 50.3, the flow is also affected by circumfer-
ential changes resulting in intense swirling mo-
tion. This behaviour persists over few radius
downstream of the position z = 50.3 before the
flow turns to be fully axisymmetric again.

Figure 2: Isocontours of the streamwise velocity at ¢t = 0.2,
for different cross sections in the streamwise direction.

In relation to the spatial growth of the insta-
bility, we identified two poststenotic regions;
these can be observed in the isosurfaces of the
streamwise velocity at ¢ = 0.2 (Fig. 3) and
t = 0.8 (Fig 5); the corresponding isocontours
of the streamwise velocity at t = 0.8 and differ-
ent streamwise positions are shown in Fig. 4.
The first region (henceforth labelled “region
A”) is closer to the constriction and encom-
passes the fluid jet arising from the stenotic
region. In the region A, the instability has
already initiated, but it has not broken the
coherency of the jet. As second region (hence-
forth labelled “region B”) we identify the re-
gion further downstream where large variations
of the flowfield occur. In this region, the co-
herency of the fluid jet cannot be maintained
due to the swirling motion of the fluid. As we
will demonstrate in the next Section, the region
B is associated with large variations of the cir-
cumferential shear stress. Although the length
of the regions A and B varies across the pulsa-
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tion cycle, the largest flow variations occur at
about 30 to 50 radius downstream of the steno-
sis. The isocontours in Fig. 4 (¢ = 0.8) show
similar effects as for ¢ = 0.2, with the only
difference being the strength of the instability
for all streamwise positions; this is indicated
by the extend of the flow asymmetries in the
cross sectional planes.

Figure 3: Isosurface u = 0.92 of the streamwise velocity at
t=0.2.

X=23.6

Figure 4: Isocontours of the streamwise velocity at ¢ = 0.8,
for different cross sections in the streamwise direction.

Fig. 6 shows the streamtraces of the velocity
field at different time instants for the cross-
section at z 30. Streamtraces in a plane
give only a partial picture of the topology of
the 3D flow. Nevertherless, this is sufficient to
show the changes in the topology of the flow
during the pulsation cycle. We observe that
the critical points (points of zero velocity) vary
in number and location between different time
instants (Fig. 6).



Figure 5: Isosurface u = 0.92 of the streamwise velocity at
t=0.8.

t=0.4

Figure 6: Streamtraces of the velocity field at £ = 30 and
different time instants.

WALL SHEAR STRESS

As mentioned in the introduction, the wall
shear-stress is of great importance in phys-
iological flows. Fig. 7 shows isocontours of
the longitudinal component, 7;,, of the wall
shear-stress at five different time instants; 7,
is calculated by projecting the velocity vector
onto a direction tangent to the wall, facing
the streamwise direction. Fig. 7 shows that
the separated flow region, indicated by nega-
tive shear stress, is extended up to 60 radius
(t = 0.8) downstream of the stenosis. The ex-
tend of the separation is reduced at the earlier
time instants of the pulsation cycle.

Futher, in the region A we observe elon-
gated structures emerging from the exit of the
stenosis. These elongated structures are due
to the compression of the fluid jet by the two
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Figure 7: Isocontours of 7zn at different time instants;
Dashed and solid lines denote negative and positive stresses,
respectively.
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Figure 8: Distribution of maximum 7, (for each cross sec-
tion) at five different time instants. The two vertical lines
represent the beginning and end of the constriction.

vortical structures observed in the cross sec-
tions of the streamwise velocity contours in
Figs. 2 and 4. The compression effect also
leads to the formation of “bubbles” (Fig. 7 for
t = 0.6 + 1) of positive wall shear-stress, in-
side the regions of negative stresses. Strong
mixing of positive and negative stresses occurs
between z = 35 and = = 45. For all time in-
stants the largest values of 7,, appear in the
stenotic region (Fig. 8). The peak value occurs
at the centre of the stenosis.

In Fig. 9, we have plotted the isocontours
of the circumferential component of the shear
stress Ty,; the latter is calculated by projecting
the velocity vector onto a direction tangent to
the wall, orthogonal to the streamwise direc-
tion. Similar to 7,, elongated structures of
Tin also appear close to the constriction region,



but they extend to a smaller area compared to
Tzn- Another observation is that the mixing
of regions of positive and negative stresses is
more evident for 73, than 7,,. The maximum
values of 7, at each cross section are plotted
in Fig. 10. The results show that 7, is sig-
nificantly smaller, as expected, than 7., in the
region of the stenosis (see also Fig. 8). On the
other hand, large variations of 7, occur in the
region B with the peak value of 7, occuring
at £ = 40 (Fig. 10). This is in accord with
the results discussed in the previous section
regarding the bursting of flow coherency and

development of swirling motion in the region
B.
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Figure 10: Distribution of maximum 7¢, (for each cross sec-
tion) at five different time instants. The two vertical lines
represent the beginning and end of the constriction.

VORTICITY

In this section, we discuss the changes of the
vorticity field in the regions A and B. Fig. 11
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shows the zero isosurface of the streamwise
vorticity, wg, at ¢ = 0.4. In the region A
the surface consists of a superposition of elon-
gated vorticity sheets. Further downstream,
these sheets roll up to form cones facing the
streamwise direction. The zero isosurface sep-
arates volumes of positive (gray) and negative
(black) streamwise vorticity (Fig. 12). Elon-
gated “half-ring” like structures, formed by
positive and negative vorticity, arise from the
exit of the stenosis and terminate at about
z = 21 (Fig. 12). Further downstream, these
structures break up into smaller ones because
of the full development of the 3D instability.
In the region B, positive and negative vorticity
regions alternate both in streamwise and radial
directions.

Fig. 13 shows the longitudinal distribution
of the maximum (per cross section) value of
the vorticity component w, at different time
instants. The vorticity exhibits large variations
in the region B during the deceleration phase
of the pulsation. This is in accord with our
previous observations that intense swirling of
the flow occurs in this region. Moreover, w;
exhibits a peak value in the stenosis where the
onset of instability takes place.

Figure 11: Zero isosurface of the streamwise vorticity wz at
t=04.

CONCLUDING REMARKS

Our numerical simulations of three-
dimensional pulsatile flow through a symmetric
stenosis revealed the existence of an instability
with profound effects on the flow develop-
ment. Analysis of the velocity, vorticity and
shear-stress fields revealed the formation of
two poststenotic regions in which significant
flow changes occur. In the first region, closer
to the constriction, the instability is mainly



Figure 12: Volumes of positive (gray) and negative (black)
streamwise vorticity wz at t = 0.4.

Maximum Streamwise Vorticity

Figure 13: Distribution of the maximum (per cross section)
value of the vorticity component w; at different time in-
stants.

associated with streamwise flow changes. In
this region the instability grows, but it does
not lead to decomposition of the coherency of
the fluid jet arising from the stenotic region.
The second region occurs further downstream
and is associated with intense swirling of the
flow, breaking of the jet’s coherency, increase
of the circumferential stress component, as
well as large spatial and temporal fluctuations
of the stress, velocity and vorticity values. The
above conspire to the conclusion that in the
second region laminar-to-turbulent transition
occurs.

Bearing in mind that rapid variations of the
wall shear stress are of paramount importance
in the development of vascular diseases, our re-
sults suggest that in the diagnostic criteria and
detection techniques used in the clinical prac-
tice, attention should be given not only to the
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characteristics of the flow in the stenotic re-
gion, but also to the poststenotic region where
instability and highly disturbed flow primar-
ily occur. The present results suggest that
these regions may extend up to 60 radius down-
stream of the stenosis.
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