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ABSTRACT

Direct numerical simulations are performed
in nominally fully developed channel flow at
global Mach and Reynolds numbers of 1.5 and
3000. A pressure - velocity - entropy form
of the compressible Navier - Stokes equations
is integrated using a fifth order compact up-
wind scheme for the Euler part, a fourth order
Padé scheme for the viscous terms and a third -
order low - storage Runge - Kutta time integra-
tion method. Coleman et al.’s (1995) spectral
DNS data of turbulent supersonic channel flow
in air at M = 1.5 and Re = 3000 are used
to check the accuracy of the method. Excel-
lent agreement is obtained. The present work
aims at increasing the insight into effects of
compressibility beyond what has been explored
by Coleman et al. (1995) and Huang et al.
(1995). To this end the nature of fluctuat-
ing variables is investigated using scatter plots
and transport equations, while the structural
effects of compressibility are analysed based on
the Reynolds stress budgets and comparisons
with their incompressible counterparts. DNS
data of turbulent supersonic channel flow in
CO9 at M = 1.5 and Re = 3000 are used to re-
veal the effect of thermodynamic properties on
mean flow quantities and the turbulence struc-
ture.

INTRODUCTION

Fully developed incompressible turbulent
channel flow in plane channels has been
simulated directly by several authors. DNS
data of Kim, Moin, Moser (1987) for low
Reynolds number of Re,; = u,;h/v = 180 and
of Moser, Kim, Mansour (1999) for Reynolds
numbers up to Re; = 590 are among the
most frequently used in investigations of the
turbulence structure and attempts to improve
statistical turbulence modelling. Since the
pressure is no thermodynamic variable in
incompressible channel flow, the assumption
of fully developed flow is straightforward and
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in agreement with experimental observations.
Compressible channel flow (of ideal gases)
which is also driven by a mean pressure
gradient, develops downstream, irrespective of
the wall boundary conditions, since a decay
in pressure implies a decay in density times
temperature. In order to allow for streamwise
homogeneity in their DNS of turbulent super-
sonic isothermal-wall channel flow, Coleman
et al. (1995) have replaced the mean pressure
gradient by a body force which is uniform in
streamwise direction, but varies normal to the
wall due to the mean density gradient. This
variation could have been avoided by replacing
the mean pressure gradient by a mean body
force f, rather than by pf,. Its effect on the
turbulence structure, including the Reynolds
stress budgets is, however, negligibly small,
as has been varified in a separate DNS by
Lechner (2000).

Coleman et al.’s (1995) results indicated
that the isothermal-wall boundary condi-
tion causes a turbulent flow that is strongly
controlled by wall-normal gradients of mean
density and temperature, to the point that
most of the density- and temperature-
fluctuations are a result of solenoidal mixing
by the turbulence. Hence, the dominant com-
pressibility effect was found to be due to mean
property variations so that the van Driest
transformation of the mean velocity and a
scaling of rms-fluctuations by local values of
density and viscosity proved successfull.

Further investigations into intrinsic com-
pressibility effects by Huang et al. (1995)
showed that explicit compressibility terms like
the pressure-dilatation correlation and the
compressible dissipation rate are negligibly
small. They confirmed, however, a decay
of the turbulent kinetic energy production
with respect to the incompressible case and
provided a more general representation of
the strong Reynolds analogy (SRA) which



matches the DNS data for the cooled channel
walls in an excellent way.

This investigation aims at answering some
open questions concerning intrinsic compress-
ibility effects in nominally fully developed
channel flow at M = 1.5 and Re = 3000.
It concentrates on the role of thermodynamic
fluctuations and Reynolds stress balances for
two gases, air and CO,. While the ratio of
the specific heats, v, is 1.4 for air in a large
temperature range from 100K to 600K, say, it
varies between 1.3 and 1.2 for COs in a similar
range, where only translational and rotational
degrees of freedom are excited.

A (P,U;,S)-FORMULATION OF THE
NAVIER-STOKES EQUATIONS AND
THEIR NUMERICAL INTEGRATION

Using transport equations for pressure and
entropy along with the momentum equations
has the advantage that two of Kovasznay’s
'modes’ (Kovasznay (1953)) of compressible
turbulence are computed directly. A pressure
transport equation is deduced from the conti-
nuity equation e.g. replacing material deriva-
tives of density p by derivatives of pressure p
and entropy s. For thermally perfect gases this
leads to:
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c= (qu/,o)l/2 is the speed of sound, 7y the

ratio of specific heats and D(...)/ Dt represents
the material derivative following the fluid ve-
locity u;. Introducing variables of the form
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c 0z
which e.g. describe the propagation
of 'waves’ in the positive and negative z-
direction, Sesterhenn (2001) has cast the com-
pressible Navier-Stokes equations in the follow-
ing characteristic non-conservative form:
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(u,v,w) = (u1,us,us) are the cartesian ve-
locity components. The viscous stress tensor
7;; and the heat flux vector g; are defined by
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The dissipation rate ® reads:

(7)

Effects of bulk viscosity are neglected. The
thermal equation of state

P = TijSij

p=pRT , R=g¢ (8)

and the following laws for dynamic viscosity
pu and heat conductivity A close the set of
equations:
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air:

COQ:



w(T) = CiT+Cy+ C3/T (10)
C: = 0.2144-1077 [Ns/(m?K)]
Cy = 0.2219-107% [Ns/m?]

C; = —04387-107%2 [NsK/m?]
— ., (.
/\-MPT (air, CO9) (11)

The Prandtl number Pr and v = c¢p/cy
are kept constant in the temperature range
considered.

The advantage of the special form (3, 4)
of the Navier-Stokes equations is that bound-
ary conditions can be derived consistently
with the equations, without referring to one-
dimensional inviscid approximations as pro-
posed by Poinsot and Lele (1992). At an
isothermal solid wall lying in the (z,y)-plane,
see Figure 1, the unknown wave Z* can be
computed from equation (34).

From eq. (3;) and Gibbs’ fundamental re-
lation the following exact boundary conditions
are derived

7t = Z‘+%% (12)
J
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which show explicitely that p and s evolve in
time. Besides this, solid isothermal walls imply
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The special form of the Navier-Stokes equa-
tions (3, 4) suggests the use of an upwind
discretization of wave-like terms. To this end
the compact 5th order upwind scheme 'CULD’
(Compact Upwind with Low Dissipation) of
Adams and Shariff (1996) has been used. Its
resolution properties come close to those of
spectral schemes. On the other hand do un-
symmetric coefficients generate a small amount
of dissipation which is needed to suppress nu-
merical instabilities that may be caused by
unresolved high wavenumbers. An explicit
filtering of data can thus be avoided. Spa-
tial derivatives appearing in the viscous and
heat conduction terms are discretized with an
optimized compact 4th order scheme of Lele

=0 (13)
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(1992). The solution is advanced in time with a
third-order "low-storage’ Runge-Kutta scheme,
proposed by Williamson (1980).

RESULTS

The simulated flows are characterized by the
following paramters:

M = Um/c'w s Re = pmumh/ll'w

Pr = pycp/rw , 7 = ¢p/cy

Their values are:

M Re Pr v
air 1.5 | 3000 | 0.7 14
CO, | 1.5 | 3000 | 0.69 | 1.213

Table 1: Flow parameters.

The computational domain has the size
(Lg, Ly, L,)=(4m,47/3,2)h in streamwise,
spanwise and wall-normal directions, respec-
tively, and is discretized by (144 x 80 x 129)
points. ~ While the grid is equidistant in
(z,y)-directions, the points are clustered
close to the wall. The first grid point is at
z{ = zurfvy, = 0985 and the tenth at
zf}) ~ 12.073. The maximum grid spacing in
the core region is Azt = 5.84.

Fluctuating variables

Figure 2 shows scatter plots of temperature
versus density and velocity fluctuations from
top to bottom, for air at a position close to
the wall (left) and at the centreline (right).
Obviously, temperature fluctuations are per-
fectly correlated with density fluctuations in
the wall layer. Conditioned on sweeps (dark
grey) and ejections (light grey) they show
that sweeps/ejections preferably carry posi-
tive/negative temperature fluctuations. The
positive correlation between 7' and u' is a
consequence of wall cooling and associated
with non-zero total temperature fluctuations
(T§/To = O(1071)). Scatter plots of entropy
fluctuations in Figure 3 show their strong cor-
relation with density and temperature fluctua-
tions near the wall. The fact that s’ and p’ are
decoupled there underlines the lack of intrinsic
compressibility and the idea of pure solenoidal
mixing in the wall layer. In the core region the
level of fluctuations is reduced by nearly an or-
der of magnitude compared to the wall-region,
except for the pressure fluctuations which have



the same low level everywhere. Pressure fluc-
tuations behave in a nearly isentropic manner
(P’ /P = np'/p,n ~ 1.4889) in the core region.

Compressibility effects in the Reynolds stress
budgets

For brevity we discuss only the budgets of

pui?/2 and pulu!! in Figure 4, i.e. the stream-

U
wise and the slhe:;,r stress components for air.
The terms P, TD, VD, M, VPG, DS represent
production, turbulent and viscous diffusion,
mass flux variation, velocity-pressure-gradient
correlation and dissipation. The incompress-
ible data (with symbols) of Kim, Moin, Moser
(1987) are included for comparison. All terms
have been non-dimensionalized by 7Tyum/h.
The profiles show that the compressibility ef-
fect manifests itself mainly in the wall layer
where the mean density and temperature have
steep gradients. All production, dissipation
and redistribution terms are reduced due to
compressibility. The compressibility effect is
clearly of structural nature.

Effects of fluid properties

Assuming the same wall temperature, Mach
and Reynolds number in the DNS of air and
CO, leads to a decreased bulk velocity and
an increased bulk density for the COs-flow,
compared to the air-flow. This is clear from
Figure 5 which contains profiles of mean
density and temperature for air and COs,
normalized with the wall values py,, Ty.

The mean pressure field is nearly unaffected
by the change in the ratio of specific heats.
The effect of v on the Reynolds stress tensor
and its anisotropy is also weak. The peak
rms-density and temperature fluctuations
are however reduced by nearly a factor of 2,
when « changes from 1.4 to 1.213. This is a
consequence of the reduction in mean density
and temperature gradients in the wall layer.

The Reynolds stress budgets for CO; show
a tendency which is opposite to the previously
discussed compressibility effect for air. The
production, dissipation and velocity-pressure-
gradient terms are slightly enhanced in the
wall-layer, but collapse onto their values for
air in the core region. This can be interpreted
as a damping of the compressibility effect. It
also indicates that a change in 7 controlls the
turbulence structure via the mean density and
temperature profiles. Figure 6 displays the
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budgets of pu!/?/2 and puujj for air and COs.
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FIGURES

Figure 1: Illustration of boundary treatment at a solid wall.
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Figure 2: : Scatter plots of temperature versus density and velocity fluctuations in planes parallel to the channel wall at zt =9
(left) and in the symmetry plane (right) for air.

0.15

-0.1 0

1 1

1

-0.1 0

0.1

0.1

o/p

u' /T

w'/u

o'/p

/T

441

0.02 — T

001 f

T'/T
(=]

-0.01

-0.02

002 — T T

0.01

T'|T
(=]

-0.01 r

-0.02 T3 R

0.02 T T T

0.01 f

T /T
S

-0.01 r

-0.02 .

0.02

0.01

s' /ey
o

-0.01

-0.02

0.05

0.02 r

0.01

0

s’ [cy

-0.01

-0.02

-0.02 -0.01 0

o'/p

u' /T

w'[u

o/e



0.2 : .
0.02 .
.1 r | 001 1
Qa 0r . i oFf i
~ “n
001 .
0.1} .
002 F .
0.2 s s L
-0.1 0 0.1 p'/p 0.1 01 ?»'/p

Figure 3: Entropy fluctuations versus density, temperature and pressure fluctuations in planes parallel to the channel walls at
zt =9 (left) and at the centreline (right) for air.
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Figure 4: Terms in the budget of pu//2/2 (left) and pu!/u! (right) for incompressible (M = 0, with symbols) and compressible
flow (M = 1.5, without symbols) of air.
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Figure 5: Mean density and temperature profiles for air (green curves) and CO2 (red curves).
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Figure 6: Terms in the budget of pu} 2/2 (left) and pu//u} (right) for air (without symbols) and CO2 (with symbols).
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