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ABSTRACT

Large-Eddy Simulation (LES) allows to re-
duce the computational costs in the numerical
simulation of turbulent flows in comparison
with Direct Numerical Simulation (DNS). This
reduction is obtained by a scale separation,
the largest ones being directly resolved, while
the smallest ones (subgrid scales) are mod-
eled. Nevertheless, usual eddy-viscosity sub-
grid models have been developed in the frame-
work of homogeneous isotropic turbulence, and
are so not able to take into account in a proper
way the presence of inhomogeneous subgrid
scales, or backscatter. That is why LES still
require the use of fine computational grids, and
thus a large amount of CPU ressources. A mul-
tilevel method applied to LES is introduced
here to reduce the CPU times. Flow variables
are decomposed into several frequency bands,
each band being associated to a computational
grid in physical space. The high-frequency
deterministic information from the finest lev-
els can then directly be used on the coarse
ones to get an accurate evaluation of the sub-
grid model, as in deconvolution-like approaches
(Stoltz and Adams, 1999, Domaradzki and
Yee, 2000). CPU time saving is obtained by
performing the main part of the simulation
on the coarse levels by freezing the smallest
resolved scales (Quasi-Static approximation -
Dubois et al., 1998), and performing an ex-
plicit reconstruction of these scales at certain
times only. Such a strategy has previously been
assessed on a quasi-steady plane channel flow
configuration (Terracol et al., 2001a) by the use
of a simple V-cycling strategy. Here, a particu-
lar two-level case of this method is considered
for fully unsteady flows, in which a dynamic
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evaluation of the time during which the QS
approximation remains valid is performed by
a priori estimates of the small scales time vari-
ation. The method is assessed here on a fully
unsteady time-developing compressible mixing
layer.

MULTILEVEL DECOMPOSITION

We consider the framework of a multilevel
decomposition of any variable ¢ of the flow by
the use of N different filtering levels. FEach
level is defined by mean of a family of low-pass
filters {G,}, n € [1, N] which are characterized
by their cutoff lenghtscales A,,, associated to
the cutoff wave numbers k,, in spectral space.
Any filtered variable is then formally defined
as the convolution product of the continuous
variable with the filter kernel G, :

G % (2, 1) =/QGn(w~§)¢(€,t)d€ (1)

where z € Q C IR? is the space coordinates
vector, and ¢t € IRT is time.

Hereafter, the case A,y; > 2A,, will be con-
sidered, or equivalently k,4; < k,/2.

The filtered variables at the finest level of res-
olution are defined as 5(1) =Gy x ¢.

The filtered variables at the level n € [2, N] are
then recursively defined as :

a(n) Gn*Gn_l*...*Gg *Gl *¢ (2)
g1 ()

with, for any m € [1,n]: G (.) = Gp * Gy *

.G mt1 * Gy x () . Each flow variable ¢ can

then be decomposed as :

i

n—1
$=3"+3 64 + ¢ (3)

=1



where: E(n) =GP (4), 6¢t = 5(1) _ g(!ﬂ)’ and

P =¢— 5(1) = §¢°. In the compressible case,
density-weighted filtering is used.

In the multilevel decomposition (3), E(n) corre-
sponds to the resolved scales at the nth level of
resolution. The details §¢! correspond to the
scales resolved at the level [, which are unre-
solved at the level [+ 1, and ¢” corresponds to
the finest level unresolved scales. For N = 1,
the classical LES decomposition is obtained.

BASIC EQUATIONS

We consider the dimensionless compressible
Navier-Stokes equations :

O N(V) =0

T (4)

T
where V = (p, pUT,pE) , U = (uy, ug,uz)T
and :

V.(pU)

( V(pUU)+Vp—V.o
V.(pE+p)U)-V.(c:U)+V.Q

N(V) =

where p is the pressure, p the density, U the
velocity vector, and pF the total energy. Clas-
sical expressions are used for the viscous stress
tensor o and viscous heat flux vector Q).

The filtered equations at any level n € [1, N]
are simply obtained by applying the filtering
operator G' to equation (4). Assuming clas-
sicaly commutation of the filtering operation
with time derivatives, the filtered equations at
the level n are :

oV
ot
where 7(%) is the subgrid term defined as :

+ N (V) = -7 (5)

T = W(n) _N<V(n)>

(g7, N1(V)

The commutator [., .] takes into account all the
commutation errors between two operators :

[F,g]:fog_GO}-

(6)

Commutation errors between space derivatives
and filters are included in 7(®). However, if the
filters used are commutative with space deriva-
tives, the only remaining term in 7(*) comes
from the non-linear (convective) term.

MULTILEVEL SUBGRID CLOSURE

|

At each resolution level n, the subgrid term

T requires a closure because N(V)(n) re-

mains uncomputable. By reccurence, the fol-
lowing relation is obtained :

T = [gil,/\/](V)

n—

= YR M)+ g5 (T0)

=1

(7)
In this relation, the only term that needs to
be parametrized is 7(1), corresponding to in-
teractions with the unresolved scales from the
finest level. Provided that ki is sufficiently
large, a simple LES closure (see Sagaut, 2001
for a review) can be used to compute 7).
On the coarser levels, the subgrid terms can
then be simply evaluated by relation (7). No-
tice that in this general relation, no assumption
about commutativity of the filtering operations
with space derivatives is used. This last point
can be of great interest for applications using
non-uniform meshes where commutation errors
may occur. Moreover, all the non-linearities
are taken into account, while classical closures
neglect the subgrid terms associated to the
non-linear expressions of the viscous terms o
and (). Finally, no particular form of the
subgrid term is assumed: both the dissipa-
tive forward transfer and the anti-dissipative
backscatter of energy are represented, while
traditional eddy-viscosity models are strictly
dissipative .

Relation (7) can also be interpreted as a
N-level generalization of the well-known Ger-
mano’s identity (Germano, 1986). In particu-
lar, it can simply be re-written as :

T(n+l) _ Gn+1 *T(’ﬂ-) — [Gn_’_l*w“’\q (r(n)) (S)

which falls into the original Germano’s identity
when n = 1 and when commutativity of the
filters with space derivatives is assumed (i.e.

[Gnx, V] =0).

TIME SELF-ADAPTIVE PROCEDURE

Discrete multilevel formalism

From a practical point of view, the finest fil-
tering level is implicitely defined by the space
discretization, as it is generally the case in
Large-Eddy Simulation. The multilevel scale
separation is then obtained through the use of
a hierarchy of embedded grids, as it was al-
ready the case in Terracol et al.(2001a). For
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any field a(n) on the n-th grid level, the field

E(nﬂ) on the coarser grid level correspond-
ing to the (n + 1)-th filtering level is given by
$(n+l) = RZ'H(E(n)), where R?*! is a fine-to-
coarse interpolation operator acting as a dis-
crete filter on the solution. The frequency com-
plement d¢™ between the two levels n and n+1
is simply given on the n-th grid level by: §¢™ =
# =P (3") = (1 - Py B (37,
where P7*! is a coarse-to-fine interpolation
operator. This leads to a simple exact re-

construction of E(n) from $(n+1) and §¢" by:

o = Pr, (3"Y) + 6.

This hierarchy of N embedded grids realises
a N-level multilevel decomposition of the flow,
in which each continuous filtering operator G,
is formally equivalent to the discrete one R}_;,
and each level cut-off number &, is implicitely
defined by R]:_; and by the numerical cut-off

wave number of the grid n.

Time-adaptive multigrid cycling procedure

In the present paper, a simple two-level V-
cycling strategy in time has been retained. It
is an extension of the one used in steady multi-
grid algorithms. For N = 2, one cycle is
defined as follows :

1 - Starting from time tg, any variable 5(1)
from the fine grid is restricted on the sec-
ond grid by the use of the restriction operator
R3, while the associated frequency complement

St = 5(1) — P} ($(2)) is stored on the fine grid.

ii - Time integration is then performed on
the coarse grid with the multilevel closure (7)
during N, time steps satisfying the CFL condi-
tion on the second grid. The second grid being
defined from the fine one by keeping half the
number of mesh points in each direction, the
time step on this grid is twice the fine grid’s
one: 2At.

iii - After time integration on the coarse grid
(t = to+ 2N At), the resulting field is interpo-
lated to the fine grid by the use of the inter-
polation operator Pj. The correct frequential
level on the fine grid is then obtained by adding
to the interpolated low-frequency field the fre-
quency complement ¢! kept frozen during the
coarse level time integration :

5(1)(t0 + 2N At) =

—2) (9)
P16 (to + 2N.AL)) + 6¢' (to)

iv - The small scales are then refreshed
and recorrelated to the large-scale field
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by proceeding to time integration of the
whole high-frequency field with a standard
LES closure on the fine grid level during
one time step At. The new fine-level field

5(1)(&) + (1 4+ 2N;)At) will then be used to
compute the closure terms on the coarse grid
during the next cycle.

A similar strategy is used in the extension of
the velocity estimation model of Domaradzki
and Yee (2000) to high Reynolds numbers,
where an integration of the full Navier-Stokes
equations is performed on a two times finer
computational grid to regenerate small scales.
While this cycling strategy is unconsistent in
time, it can be used for unsteady simulations
provided the QS approximation (Dubois et al.,
1998) is satisfied. That is to say that the time
variation of the frequency complement §¢' of
any variable ¢ can be neglected during the time
integration on the coarse grid. Indeed, Dubois
et al.(1998) have shown that the smallest scales
of the flow require less accuracy in time than
the large energy-containing ones because they
reach equilibrium more quickly.

The originality of the present approach is to
proceed dynamically to an estimation of the
time during which the QS approximation re-
mains valid and coarse-grid time integration is
allowed. This is achieved by the use of a pa-
rameter €,,,, which represents the maximum
value allowed for the relative variation of the
total energy associated to the small scales in
the range k2 < k£ < k;. The number of time
steps N, allowed on the coarse grid is then
evaluated at each fine-to-coarse restriction step
such that :

< Emazr  (10)

9N, At ”ﬁ(sem
ot )

—~(1
/HpE()
2

where p/E(n) is the resolved energy at level n,

se® = BV — PLGE®), and |||, is the £s-
norm. The time derivative in (10) is simply
evaluated by a backward first-order approxi-
mation. The parameter €,,,, is directly linked
to the error commited on the smallest scales of
the flow, and should then be chosen to avoid a
too important time decorrelation between large
and small scales, which can lead to numerical
instabilities.

APPLICATION: COMPRESSIBLE MIXING
LAYER

The proposed algorithm has been applied to
the case of a time-developing compressible mix-



ing layer (Vreman et al., 1997, Comte et al.,
1992, Moser and Rogers, 1991). This flow is
a typical example of a fully unsteady case, in
which different scales, both in space and time
are present.

Numerical scheme

The numerical scheme used is a classical
cell-centered finite-volume scheme, in which
the convective fluxes are evaluated under their
skew-symmetric form (see Ducros et al., 1999)
to reduce aliasing errors, and the viscous ones
using a staggered formulation. The time
integration is performed using a third-order
low-storage Runge-Kutta scheme (see Lenor-
mand et al., 2000). This leads to a non-
dissipative scheme which is second-order accu-
rate in space, and third-order accurate in time.
Finally, the grid transfer operators used in all
the multilevel simulations are third-order ac-
curate non-dissipative operators.

Computational cases

The computational domain is a rectangular
box [0; L) X [—Ly/2; Ly/2] x [0; L], with pe-
riodic boundary conditions in the streamwise
() and spanwise (z) directions, and an out-
flow condition in the normal (y) direction.

As in Vreman et al.(1997), the flow is ini-
tiated by an hyperbolic-tangent-law profile for
the streamwise velocity component :

u1(y,t =0) = Uy tanh(?s—y) (11)
0

where Uy, = 1 and dg = 1/7N, is the ini-
tial vorticity thickness, with N,,; the number
of primary rollers of the simulation. The ini-
tial mean density is uniform (p = 1), and the
mean temperature is given by the Busemann-
Crocco law (Ragab and Wu, 1989). Two types
of computations have been carried out, corre-
sponding to two different values of Res,, which
is the Reynolds number based on the upper ve-
locity Uy, and on the initial vorticity thickness
8. The simulation Mach number is M = 0.2.
All the simulations reported here have been
performed with an eddy-viscosity Smagorinsky
model (see Sagaut, 2001) at the finest level of
resolution, where the Smagorinsky constant is
set to Cs = 0.18, while the multilevel subgrid
closure is used on the coarse level in the two-
level simulations.

For both the two Reynolds cases, several
two-level simulations, corresponding to differ-
ent values of the parameter ¢,,,, have been
carried out, and compared to a fine monolevel

simulation, used as reference in our study. A
coarse monolevel run has been carried out too,
and also a two-level simulation with N. fixed
to one, referred to as "MG” in the folllowing.

Low-Reynolds case: Re;, = 100

The aim of this case, with N,,; = 4, is
to assess the time-adaptive cycling strategy.
Indeed, at this low Reynolds number, the ef-
fects of the subgrid model remain moderate.
To initiate the primary rollers and the pair-
ings, a two-dimensional deterministic pertur-
bation, corresponding to the most amplified
wavelength given by linear stability analysis,
and a uniform white-noise are added to the
mean profiles in the initial rotational zone. In
this case, levels 1 and 2 correspond to two
uniform grids of resolution 643 and 323 re-
spectively, with L, = L, = L, = 1. The
computations are performed, from ¢t = 0 to
t = 100, with ¢ the time scaled with U, and
do, leading to the occurence of two successive
pairings of the rollers.

First, the influence of ¢,,,; has been anal-
ized through the time-averaged Lo-norm of the
relative error commited on momentum thick-
ness 4, of the mixing layer for several values
of €mqz taken in the range [107°;1072]. From
these first results, it seems that €,,,, should be
taken in the range [5.107°; 10~3] which lead to
CPU gain factors up to more than 4, with rel-
ative errors on 4, remaining lower than 5 %.

From a phenomenological point of view, it
should be mentionned that all the two-level
simulations exhibit the same physical behavior
than the reference fine monolevel one, with two
pairings occuring around ¢ ~ 50 and ¢ ~ 75,
while the coarse-grid simulation has still not
undergone the second pairing at ¢ = 100. The
good agreement between the two-level simu-
lations and the reference one is illustrated in
Figs. 1 and 2 presenting respectively the tem-
poral evolution of the momentum thickness §,,,
and the mean streamwise velocity profile after
the second pairing (¢ = 90). The same quality
of results is obtained for all the aerodynamics
quantities, and RMS fluctuations, at any time
of the simulation. It should be mentionned
that the two-level runs considered here "MG”,
Emaz = D X 107°, and €4, = 1072 are associ-
ated to CPU gain factors of 1.7, 1.8, and 4.15
respectively, while the results remain in very
good agreement with the reference simulation.

High-Reynolds case: Res, = 10'°
In this quasi-inviscid case, the ability of the
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Figure 1: Momentum thickness &m. X Coarse
monolevel, O : Fine monolevel, ---: MG(N. = 1),

Emaz = 1 X 10—3

t Emaz =5 X 1075, —oic :

Figure 2: Low Re case: streamwise velocity profile, t=90
(See Fig. 1 for caption).

multilevel closure of dealing with highly turbu-
lent flows is studied, since in this case, the only
dissipation present in the simulation is related
to the subgrid model used.

Here, the case N,,; = 8 in a computational
box of dimensions L, = 1, L, = 404y, and
L, = %Lx is considered. The resolution of
the fine grid is 120 x 100 x 60. The grid is
uniform in the streamwise and spanwise direc-
tions, while it is refined in the shear layer of the
flow [~L,/8; L,/8]. The coarse grid is defined
from the fine one, by keeping half the num-
ber of points in each direction, yielding to the
definition of a 60 x 50 x 30 grid. To initiate
the pairings, only a white noise perturbation
is added to the initial mean profiles.

The simulations have been performed from
t = 0 tot = 160, and exhibit the same physical
behavior, except the coarse LES which is less
turbulent, and remains quasi-bidimensional.
That can be explained by an over-dissipative
behavior of the model with the coarse resolu-
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tion, preventing the development of transverse
modes. On the other hand, all the other simu-
lations exhibit the same strongly turbulent and
three-dimensional behavior, with the presence
of helicoidal pairings, as mentionned by Comte
et al.(1992). The resulting vortex-lattice struc-
ture at ¢t = 60 is illustrated by an iso-Q levels
visualization (Hunt et al., 1988) in Fig. 3.

Figure 3: Helicoidal pairing : top view of iso-Q surfaces at
t=60

After t ~ 100, a small-scale transition oc-
curs, resulting in a sudden loss of kinetic energy
and the establishment of a Kolmogorov-like
spectrum. This point is illustrated by Figs. 4
and 5 presenting respectively the time decrease
of kinetic energy and the mono-dimensional
streamwise energy spectra obtained at ¢t = 160
for each of the computational cases consid-
ered: fine monolevel, "MG”, €par = 1074,
€maz = 1073, and coarse-grid computation.
Again, a very good agreement is observed be-
tween all the two-level runs and the reference
simulation.

It appears that no small-scale transition
occurs in the coarse-grid simulation since no
sudden decrease of kinetic energy is observed
on Fig. 4. This is also confirmed by three-
dimensional visualizations of the flow, and by
Fig. 5. On the other hand, all the two-level
computations "MG”, €mar = 1074 €par =
1073, corresponding to CPU gain factors of
1.8, 1.97, and 3.5, exhibit the good physical
behavior, and are in very good agreement with
the reference simulation. It also appears that
even the highest frequencies are well-resolved,
despite the QS approximation.

The good agreement between the multilevel
computations and the reference ones is also
illustrated by Fig. 6 presenting the mean
streamwise velocity profiles at ¢ = 100, while
the same quality of results is obtained again
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for other quantities as RMS fluctuations.
Finally, it should be mentionned that all the
simulations, except the coarse-grid one, exhibit
a self-similar phase between the second and
third pairings, as it should be the case in high
Reynolds number mixing layer (Vreman et al.,

1997).

CONCLUSION

A two-level methodology to perform LES at
lower cost has been presented and assessed in
a time-developing mixing layer configuration,
for both a low and a high value of the Reynolds
number. It results that the multilevel closure
proposed is very efficient, and allows to get re-
sults in good agreement with fine monolevel
LES. Moreover, it was shown in a more de-
tailled study (Terracol et al., 2001b) that this
closure is able to deal with backward transfer
of energy. The time self-adaptive procedure al-
lows to improve the results in comparison with
non-adaptive multilevel computations, while
the simulation times are significantly reduced
by a factor between two and four in comparison

with standard LES.
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