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ABSTRACT

Statistics of the streamwise velocity compo-
nent in fully-developed pipe flow are examined
for Reynolds numbers in the range 5.5 x 10* <
Rep < 3.1 x 10%. The second moment ex-
hibits two maxima: one in the viscous sub-
layer is Reynolds-number dependent while the
other, near the lower edge of the log region, is
also Reynolds-number dependent and follows
roughly the peak in Reynolds shear stress. The
behaviour of both peaks is entirely consistent
with the concept of inactive motion which in-
creases with increasing Reynolds number and
decreasing distance from the wall. No simple
scaling is apparent. The second moment is
compared with empirical and theoretical scal-
ing laws and some anomalies are apparent.
The scaling of spectra using y, R and u, is
examined. It appears that even at the high-
est Reynolds number, they exhibit incomplete
similarity only: while spectra do collapse with
either inner or outer scales for limited ranges
of wave number, these ranges do not overlap.
Thus similarity may not be described as com-
plete and any apparent ki 1 range does not
attract any special significance and does not in-
volve universal constants. It is suggested that
this is because of the influence of inactive mo-
tion. Spectra also show the presence of very
long structures close to the wall.

INTRODUCTION

Recent results from the “superpipe” fa-
cility at Princeton University (Zagarola and
Smits, 1998) have shown that the mean ve-
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locity profile outside the viscous sublayer in
fully-developed pipe flow exhibits a power-law
dependence in the region 60 < y* < 500, and
that outside this region, the mean velocity fol-
lows a log law provided Rt < 9000. R* is the
Kéarman number based on pipe radius. The
power-law dependence of the mean velocity on
yT expresses the direct influence of viscosity
outside the sublayer while the log-law depen-
dence is an expression of a self-similar region
in which the mean velocity scales on the wall-
friction velocity, u,, and the distance from the
wall, y, only. The literature abounds with data
for near-wall turbulent flow showing that the
higher moments do not scale simply, and this
can be explained by Townsend’s (1961) the-
ory concerning “active” and “inactive” motion
See also Bradshaw (1967) and Morrison et al.
(1992). Of particular importance is the dif-
ference in the behaviour of wall-parallel (u,w)
and wall-normal (v) velocity components as
the wall is approached: the “impermeability
constraint”, which affects eddies out to a dis-
tance from the wall that is of the order of the
eddy size is responsible for an increase of the
former at the expense of the latter. Thus, to
a first order, the inactive motion in the wall-
parallel components carries no shear stress: by
definition, the active motion is the shear-stress
bearing motion. There are also many mea-
surements that show that the active motion
does not scale on inner variables either, a par-
ticular result being that the “constant stress”
region (—uv =~ u2) does not hold, except in the
limit of very high Reynolds number. These



effects may be traced to the direct influence
of viscosity outside the sublayer. Given these
difficulties, it is hardly surprising that simple
arguments involving the overlap of scales (so
giving rise to self-similarity) may well be inap-
propriate.

Since publication of Townsend’s seminal
work, considerable attention has been devoted
to the deduction of spectral forms associated
with the self-similar nature of “attached wall
eddies”. Such self-simlarity manifests itself at
‘high’ Reynolds numbers as a range of stream-
wise wave numbers, k1, in which the spectrum
of the streamwise velocity, ¢11 oc uZky®. It
should be noted that a prescribed slope over
some region of wave number can usually be
found in turbulence spectra on log-log axes.
A simple theory for pipe flow was proposed
by Perry and Abell (1977) and Perry et al.
(1986), but it is equally appropriate for bound-
ary layers (Perry and Li, 1990, Marusi¢ and
Perry, 1995, Jones et al., 2001). Given the
prominence of the theory and its potential
usefulness (so much so that its existence at
practical Reynolds numbers is often taken for
granted — Nikora, 1999), and given the unique-
ness of the present results (in terms of the
high Reynolds numbers) a careful reappraisal
is clearly needed.

Scalings for ‘large’ scales (in which the di-
rect effects of viscosity may be neglected) con-
tributing to the streamwise velocity component
may be scaled using either inner or outer scales.
Outer scaling suggests that y is not important
and that dimensional analysis therefore yields

¢1}1€§j§1) = ¢11$1R) =gi(kiR), (1)
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while, alternatively, inner scaling suggests the
exclusion of R as a relevant length scale so that,
at higher wave numbers,

pu(k) _ ou(ky)

The veracity of these scalings is usually judged
by the degree of collapse of the spectra at wave
numbers lower than that at which spectral
transfer (at high Reynolds numbers, given by
the mean dissipation rate) becomes important.
In the range of wave numbers Rl<k < 'y"1
over which both Eq. (1) and Eq. (2) are valid
(that is collapse is evident with both scalings,
as required by asymptotic matching), it then
follows that

¢11(k1) = Rulgi (k1R) = yulga(kry).  (3)

Dimensional arguments and direct proportion-
ality between g; and g9 therefore imply

$11(k1R) Ay

and
¢11(kry) A1
Z Ry g2(k1y), (5)

where A, is a universal constant. Collapse with
both length scales therefore suggests a self-
similar structure such that ¢1q(k1) oc u2ky .
One could therefore call this situation “com-
plete similarity”. However, it is possible that,
for example, while y and u, might form a com-
plete parameter set to define the motion in the
range of wave numbers over which collapse is
apparent (Eq. (2)), these wave numbers might
in fact be too high for collapse to be possible
using R and u, (Eq. (1)). Thus simultaneous
collapse is not possible. We shall refer to this
situation as “incomplete similarity”, in which
case the constant A, in Egs. (4) and (5) cannot
be universal.

Note that this analysis is predicated on two
principal assumptions. The first is that the
kinematic viscosity, v, does not enter the prob-
lem. This requires that k; < u,/v. In turn,
this requires the Reynolds number to be suffi-
cently high, or equivalently that y is sufficiently
large such the energy-containing scales are not
affected directly by viscosity. The second as-
sumption is that u, is the correct velocity scale
for both the inner and outer regions. In partic-
ular, in conformity with Townsend’s theory, it
supposes that inactive motion arises primarily
through the influence of attached eddies and
that therefore u, is the appropriate velocity
scale. Note also that this analysis does not
apply to the wall-normal velocity component
which is blocked at wave numbers k; ~ y L.

Below, spectra are presented in premulti-
plied form on linear-log axes. A linear ordi-
nate enables a closer scrutiny of scalings than
that afforded by a logarithmic one. In addi-
tion, the use of non-dimensional axes ensures
that not only the ordinate, but also the area
under the spectra are directly proportional to
energy. Thus integration of the spectra yields

w2" = uZ/u2. Spectra are therefore in the
form:

kiR¢11(k1R)
2

= hi(kLR), (6)

for outer scaling, and for inner scaling, in the
form:
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In the context of assessing these scalings for
data in the present experiment, it is useful to
clarify precisely what the foregoing analysis in-
dicates. Strictly, as long as v/u, < y < R (the
Reynolds number is ‘high’), Eqgs. (4) and (5)
should both show a k7! range for R™! < k; <
y~1. However, in order to remove the ambigu-
ity concerning the relative values of y and R,
one may fix alternately y in Eq. (4) and then
R in Eq. (5). Eq. (6) invites us to retain
only R and u, as independent variables. Thus
while y is fixed, u, is varied by changing the
pressure drop along the pipe. In practice, this
involves a change of Reynolds number (strictly
Kérmén number) as changes of R are a lit-
tle more problemmatical. This does not pose a
problem as long as the Reynolds number is suf-
ficiently high such that the wave-number range
of interest is not directly affected by viscosity.
Alternatively, Eq. (7) invites the use of y and
u, only as independent variables for any fixed
R. In this case, y can merely be varied (subject
to v/u, € y < R) at a fixed Reynolds num-
ber, although as long as v can be neglected, a
value of y at any Reynolds number might be
chosen.

For brevity, in what follows we present spec-
tra (obviously using both inner and outer scal-
ing) at different y/R for the lowest and highest
Reynolds number. The spectra at fixed y/R for
several Reynolds numbers confirm the present
conclusions and are presented elsewhere.

EXPERIMENTAL PROCEDURE

Details of the pressurised pipe and results
from extensive pitot-tube measurements are
provided in Zagarola and Smits (1998). Is-
sues regarding the fully-developed nature of
the flow, axisymmetry and temperature con-
trol have been dealt with exhaustively by them.
Morrison and Smits (2001) have also fully ad-
dressed issues regarding roughness and con-
clude, as Zagarola and Smits (1998) do also,
that the “superpipe” is smooth for all Reynolds
numbers Rep < 35 x 108. Here, velocity mea-
surements are made using standard hot-wire
techniques using wires with length-to-diameter
ratios, {/d = 200, and for Rep > 3 x 10°,
100. Convergence of all moments is better than
1%, except for the third moment in the region
10 < y* < 30. In this range the convergence
of the third moment is better than 10% only
because here its value is numerically close to
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zero. Positional accuracy as a fraction of R
is better than 0.02%. Hot-wire calibration is
achieved using a fourth-order polynomial, the
signal being sampled using 12-bit A-D conver-
sion. In order to maximise spatial resolution,
the mean velocity is kept as low as possible, the
sample rate being set such that the equivalent
spatial resolution is slightly better than that
set by the wire length. The signal was low-pass
filtered at the Nyquist frequency and standard
FFT algorithms (Hanning window) are used to

calculate the spectra. No curve-fitting is used.
ky =2nf/U(y).
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Figure 1: Second moment: wall scaling

RESULTS

Fig. 1 shows u2+, which has two maxima:
the first, prevalent at low Reynolds numbers, is
well documented. With better resolution pro-
vided by LDA, the data of den Toonder and

Nieuwstadt (1997) suggest that u2" reaches a
maximum of about 7.3 that is constant with
Reynolds number up to about 2.5 x 10%. How-
ever, the present data show that this maximum
is, in fact, Reynolds-number dependent, in-
creasing with Reynolds number and reaching
8.6 at Rep = 7.5 x 10%. At higher Reynolds
numbers, the reduction in this peak with in-
creasing Reynolds number is of course the re-
sult of poorer spatial resolution. Note that
any resolution effects even at the lowest Rep
would reduce the maximum below that ob-
tained using LDA. It has also been suggested
by Mochizuki and Nieuwstadt (1996) that the
position of this peak is also independent of
Reynolds number at y* ~ 15. The present
data appear to confirm this, although owing
to the effects of probe resolution, no firm con-
clusions may be drawn. The near-wall peak
indicates a principal feature of inactive mo-
tion, namely that it increases with Reynolds
number. Interestingly, this peak coincides with



the expected peak of turbulence energy pro-
duction.
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Figure 2: Second moment: outer scaling.

Fig. 2 shows the data of Fig. 1 replotted
against y/R. There is a striking collapse in
the outer region, y/R > 0.4, except at the low-
est Reynolds number. There is no collapse in
the overlap region, and, as Fig. 1 shows, no
collapse anywhere using wall variables, except
presumably very close to the wall. Note that
the near-wall peak now depends on y/R: this
provides a second principal conclusion, namely
that inactive motion depends on distance from
the wall.

Based on considerations of the self-similar
structure of attached wall eddies suggested by
Townsend (1976), Perry and Abell (1977) and
Perry et al. (1986) have suggested logarithmic
functional forms for the normal stresses of the
surface-parallel velocities:

W =B - A ln[%] —CyH)%. (8)
The log term is obtained by integration of Eq.
(4) or (5) for R™! < k; < y~!. For com-
parison with the data of Fig. 2, we take the
constants suggested by Perry and Abell (1977):
B, = 3.53,A; = 0.8 and C = 9.54. They
are, respectively, 2.67, 0.9 and 6.06 in Perry
et al. (1986) but this makes no difference to
our conclusions concerning the proposed func-
tional form.

Fig. 2 also shows a comparison with Eq. (8):
at Rep = 3.09 x 10°, the agreement is good,
largely because the viscous deviation term is
small. The changes with Reynolds number
even at y/R = 0.1 derive from the viscous de-
viation term, which qualitatively predicts the
direct influence of viscosity outside the sub-
layer correctly. At Rep = 5.5 x 10* however,
the behaviour at small y/R is incorrect owing
to the large inactive contribution. This is one
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of the two reasons for the change in gradient
of the data (and therefore A;) with Reynolds
number. Moreover, for 0.02 < y/R < 0.1,
this change in gradient is not monotonic, first
decreasing before increasing. This behaviour
is therefore indicative of two effects: one the
increase in the inactive contribution with in-
creasing Reynolds number the other the reduc-
tion in direct viscous effects emanating from
the sublayer as the Reynolds number increases.
While the latter is estimated quite well (but
only for Rep > 106), no account of the former
is taken in Eq. (8), which appears therefore to
require an additional term, the form of which
is strongly dependent on the choice of outer
velocity scale.

If a spectral self-similar range exists, such
that ¢q1(k1) o k' (“complete” similarity),
the constant of proportionality (A; in Eq. (8))
is universal. However, the evidence of Fig. 2,
is that the slope of the data in the vicinity of
y/R =~ 0.1 (where the viscous deviation is neg-
ligible and where a ki ! range is most likely is
still increasing at the highest Reynolds num-
ber. One should also bear in mind that u2, as
the integral of ¢11, is less sensitive to Reynolds-
number scalings than the integrand itself. It is
possible that at even higher Reynolds numbers,
the slope of 42 may asymptote to a constant
value indicative of complete similarity in ¢;;.
Re-writing Eq. (8) and omitting the viscous
deviation term

w?" =B, — A In[y*] + A, In[RT]  (9)
shows that the outer peak in Fig. 1 will in-
crease indefinitely with Reynolds number, re-
gardless of considerations of the universality of
A;. One might suppose that, at some stage,
the outer peak might become larger than the
inner peak in the sublayer. However, this is
unlikely as it is realistic to expect the inactive
motion near the wall to continue to increase
with Reynolds number as long as its source in
the outer layer does.

Using inner scaling, Fig. 3 shows ¢11(k1y) in
the form given by Eq. (7) for Rep = 5.50 x 10*
over the range in y for which collapse might be
expected. Fig. 4 shows equivalent data for
Rep = 3.09 x 10° plotted in the same form. In
Fig. 3, it is evident that the Reynolds number
is simply too low for collapse to be possible.
Note that RT = 1500 only and that the direct
effects of viscosity permeate the whole layer, as
evidenced by Fig. 2. At the highest Reynolds
number (Fig. 4), there is some collapse for



0.1 < k1y < 10 approximately, the range in-
creasing with Reynolds number. However, the
collapse is not along a horizontal line, suggest-
ing incomplete similarity.
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Figure 3: Inner scaling, Rep = 5.50 x 104, Rt = 1.50 x 103.
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Figure 4: Inner scaling, Rep = 3.09 x 108, R* = 5.52 x 10%.

Fig. 5 shows the same data as in Fig. 4,
but plotted using outer scaling. For k1R ~ 1,
some collapse along a horizontal line is appar-
ent for about half a decade in kiR, but for
0.033 < y/R < 0.107 only. Inspection of Fig. 4
in the region of k;y ~ 0.1 shows that the same
data (0.033 < y/R < 0.107) clearly do not
collapse using inner scaling. Instead, spectra
for y/R = 0.033,0.063 and 0.107 show discrete
peaks, appearing in a wave-number sequence
determined by y~!, equivalent to the collapse
in Fig. 5 occurring at a point, k1R ~ 0.75.
Since collapse only occurs with outer variables
and not inner varuiables, this also suggests in-
complete similarity.

Interestingly, as has been shown by Kim and
Adrian (1999) and Jiménez (1998), the spectra
show the presence of very long structures near
the wall giving rise to a bimodal shape at low
Reynolds numbers. Their wavelength increases
as y increases, reaching a peak of about 10R
at y/R =~ 0.1 before decreasing at larger y.
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Figure 5: Outer scaling, Rep = 3.09 x 106, Rt = 5.52 x 104.

DISCUSSION AND CONCLUSIONS

On balance, it would appear that while col-
lapse of the velocity spectra may be possible
with either inner or outer scaling (incomplete
similarity), it is unlikely that simultaneous
collapse with both in the same wave-number
range is possible (complete similarity), at least
up to the maximum Reynolds number attained
here. Thus spectra here do not exhibit a
k7! range indicative of self-similar structure.

The behaviour of u? is consistent with the no-
tions that, (a), inactive motion increases with
Reynolds number and that, (b), inactive mo-
tion increases as y/R decreases (down to the
sublayer). On the basis of (a) and (b) alone,
complete similarity as outlined above seems to
be unlikely because, while the active motion
scales on y and u, only (in the limit of infi-
nite Reynolds number) as Townsend proposed,
the inactive component always requires three
scales, namely y, R, and a velocity scale, in
compliance with (a) and (b) above. Whether
u, is the correct choice of outer velocity scale
or not has been questioned and it has been sug-
gested that this should be (U, — U) (Zagarola
and Smits (1998). This issue has not yet been
fully addressed.

It is possible that a ki ! range may appear
at even higher Reynolds numbers typical of the
atmospheric surface layer. Its often-published
appearance (see, for instance, Kader and Ya-
glom, 1991) leads to the obvious question of
why this might be so. Questions of interpre-
tation aside, it has been suggested by Hunt
and Morrison (2000) that the phenomenon of
“shear-sheltering” makes possible a self-similar
region which is sheltered from large-scale veloc-
ity fluctuations by the effects of strong shear.
Thus the influence of inactive motion is miti-
gated, and can be represented by outer scales
alone. However, this suggestion awaits futher



investigation. Here we note merely that the
term “inactive” may be somewhat of a mis-
nomer, as shear induced by large eddies will
undoubtedly be related to energy and shear-
stress production. It is surely no coincidence
that the near-wall peak in 42, which increases
with Reynolds number, occurs at the same po-
sition as that of maximum energy production.

Consideration also needs to be given to the
direct influence of viscosity outside the vis-
cous sublayer, as evidenced by its effect on the
mean flow (Zagarola and Smits, 1998), thus
contravening one of the conditions necessary
for complete similarity. It is interesting to note
that, as suggested by Fig. 5, the lower limit
to the region in which complete similarity is
most likely to exist, 0.033 < y/R < 0.107, is
equivalent to y* ~ 1800 at Rep = 3.09 x 106,
and that collapse of the spectra is significantly
worse at lower Reynolds numbers. Thus it is
very unlikely that complete similarity will be
possible below this Reynolds number. Note
that an equivalent boundary-layer Reynolds
number is Reg ~ 150,000! Fig. 2 shows that
the direct effects of viscosity on u? are appar-
ent in the outer region for Rep < 105.
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