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ABSTRACT

Results from linear stability analysis are
presented for widely variety of top-hat plane
jets, including viscous effects and high convec-
tive Mach number plane jets. It is found that
the dominant mode is 2-D antisymmetric mode
for Mc less than 0.8, 3-D antisymmetric mode
for Mc larger than 0.8 and less than 1.5, and 2-
D symmetric mode (S2) for Mc larger than 1.5.
Direct numerical simulations of spatially devel-
oping 2-D and temporally developing 3-D are
performed using high-order compact schemes.
2-D DNS and stability analysis show that S2
instability mode nature prohibits vortex pair-
ing in the flow field for high Mc numbers. 3-D
simulations for Mc=1.13 show sound field are
observed when (0,2) modes become dominant
after saturation of oblique modes.

INTRODUCTION

A fundamental problem in the study of com-
pressible shear flows is the analysis of com-
pressible jets, which can be found in such di-
verse contexts as rocket, scramjet, ramjet, tur-
bofan and turbojet engines. Recently and with
the new noise regulations, reducing jet engines
acoustic emissions became a major challenge
for aircraft designers and manufacturers (see
Lele!),Colonius? ,Mitchell® et al.). The under-
standing of the effect of jet structures on the
noise generation (acoustic waves) is very cru-
cial for noise control. Therefore and in this
challenging context, we investigated the linear
stability of high Mach number plane jets, then,
and by means of DNS, the development of the
corresponding supersonic flow structures after
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being perturbed with the unstable modes.

COMPUTATIONAL DETAILS

In this work, the linearized, three-
dimensional, viscous, compressible, parallel
flow disturbance equation representing the
equations of state, mass conservation, x1- To-,
z3-momentum, and energy are considered. All
nondmensionalized flow variables are decom-
posed into a mean and fluctuating component
asd=d+d.

We employed the mean velocity profile given
by
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The disturbances were assumed in the form

of normal modes.
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The angle of the disturbance with respect to
the streamwise direction is given by
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In the direct numerical simulations, the
following nondimensional equations governing
the conservation of mass, momentum, and en-
ergy for a compressible Newtonian fluid were
solved using sixth-order compact finite differ-
ence schemes?) in all directions. The governing
equations nondimensionalized by the charac-
teristic physical scales, such as the half-width
of b, are given as follows:
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Time advancement was performed by fourth-
order Runge-Kutta algorithm. For 2-D spatial
case, the computational mesh was Ny, X Ng, =
600 x 300 and for 3-D temporal case, the com-
putational mesh was Nz, X Ng, X Ng; = 200 x
200 x 100.

RESULTS

Linear stability

2D. Figure 1 is the results of linear stabil-
ity analysis when 8 = 0 (8 = tan™'(83/a)) for
Re=1000 and Mc less than 0.75. (Mc stands
for convective Mach number) Horizontal and
vertical axes are wave number o and linear
growth rate w; respectively. The curve plotted
the eigenvalue of largest growth rate for each a.
Continuous line, dashed line, and dotted line
represent results of Mc=0.38, Mc=0.57 and
Mc=0.75 respectively. Bold line corresponds
to antisymmetric mode (hereafter referred to
as Al) and fine line corresponds to symmetric
mode (hereafter referred to as S1). For convec-
tive Mach number less than 0.75, two unstable
modes Al and S1 exist, but in this range, the
antisymmetric mode is dominant. With the in-
crease of Mc, the growth rates of these modes
decrease, however the growth rate of the S1 de-
creases quicker than Al. In Mc=0.85, there is
no positive growth rate of S1 mode.
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Figure 1: Effect of Mach number on the growth rate of 2-D
waves for Mc=0.38-0.75 and Re=1000.
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Figures 2 correspond to higher Mach num-
ber case. In this Mach number range, unstable
modes, other than A1, show the largest growth
rate at higher wave numbers. In Mc=1.51, five
antisymmetric and symmetric modes appeared
alternatively, therefore we called them A1, S2,
A2, S3, A3 respectively. S2 mode which ap-
pears first by the increase in Mc is symmet-
rical, and this mode becomes dominant over
Mc=1.13. Kudryavtsev® performed spatial 2-
D DNS of Mc=1.5 plane jet that can be con-
sidered as a validation to our findings. From
the analysis of the eigenfunction, it was proven
that S2 mode differed from the S1 mode.
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Figure 2: Effect of Mach number on the growth rate of 2-D
waves for Mc=0.85-1.51 and Re=1000.
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Figure 3: Eigenfunctions of pressure; (a)Al mode, (b)S1
mode, (c)A2 mode, (d)S2 mode,(e)A3 mode, (f)S3 mode for
Mc=1.51 and Re=1000.

Pressure eigenfunctions at Mc=1.51 (only
S1 mode corresponds to Mc=0.57) are shown in
Figures 3. In this figure, the maximum magni-
tudes of the S1 mode eigenfunction is located in
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both sides of jet center and S2 mode eigenfunc-
tion is located at jet center and the both sides,
which implies that S2 is different from S1. Be-
sides the number of eigenfunction’s maximal
magnitudes of A1 and S1 which have 2 peaks,
S2, A2, S3 and A3 have 3, 4, 5 and 6 peaks
respectively.

3D. Figures 4 is the result of linear stabil-
ity analysis for Re=1000. Varying the Mach
number affects the dominant mode. For Mc
less than 0.8, the dominant mode is 2-D Al.
For Mach number larger than 0.8 and less
than 1.5 the most unstable mode is 3-D Al,
and near Mc=1.13, the dominant 2-D mode
changes from A1l to S2. For Mc over 1.5, the
dominant mode is 2-D S2.

(@ Mc=0.57,2-D Al (b) Mc=0.85, 3-D A1

(¢) Mc=1.04, 3-D Al

(@ Mc=1.13, 3-D A1

Figure 4: Effect of q on the growth rate of 3-D
waves; (a)Mc=0.57, (b)Mc=0.85, (c)Mc=1.04, (d)Mc=1.13,
(e)Mc=1.51 for Re=1000.

DNS

2D. Two-dimensional spatial direct numeri-
cal simulations were performed to investigate
the vortical structures and sound fields af-
ter the development of Al, S1 and S2 modes
for Re=1000. In these simulations we used
antisymmetric and/or symmetric disturbances
with broadband noise to perturb the normal
velocity at the inlet. Simulations with three
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Figure 5: Contour plots of (a) vorticity and (b) dilata-
tion; (a-1) (b-1) case 1 (A1) (Mc=0.38), (a-2) (b-2) case
1 (S1) (Mc=0.38), and (a-3) (b-3) case2 (S2) (Mc=1.51) for
Re=1000.

initial conditions were carried out. In Case
1(A1), Mc=0.38 and we used antisymmetric
and symmetric disturbances. In Case 1(S1),
Mc=0.38 and we used only symmetric distur-
bances. In Case 2, Mc=1.51 and we used anti-
symmetric and symmetric disturbances. (Note
that in Case 1(S1), only symmetrical distur-
bance was used because A1 mode grows faster
than S1 mode.) The vorticity and sound fields
are shown in Figures 5(a) and 5(b) respectively.
The contour increments are the same. In Case
1(A1l), the vortical field becomes asymmetric
with regard to jet centerline, since the antisym-
metric mode is dominant. In Case 1(S1), the
vorticity field becomes symmetrical due to the
growth of the S1 mode, because it was forced
only with the symmetrical disturbance. In
Case 2, the vorticity field becomes symmetric
with regard to jet centerline, since the sym-
metric mode is dominant and its growth rate
is larger than the antisymmetric one. In Case
1(A1) and Case 1(S1), there are pairings of the
vortices, but in Case 2, there are no pairings in
this computational region. From Figures 5(b),
we can see the generation of acoustic waves in
Case 1(A1) and Case 1(S1), however the dilata-
tion field of the Case 1(S1) is stronger than the
Case 1(A1l). In Case 2, acoustic waves can’t be
seen clearly. The difference of these acoustic
fields is explained by vortex pairing, present
in Case 1 and absent in Case 2. This absence
can be explained by the specified subharmonic
modes.

In Figures 6, the comparison of the sub-
harmonic modes growth rates shows that S1
is unstable at low wave numbers, however S2
is not unstable. From this fact, we conjecture
that no pairing of the vortices in the flow fields
is due to less development of S2 subharmonic
mode. Therefore, the generation of the acous-
tic waves is very weak. Unfortunately, it could
not be confirmed here, but we believe that the
effect of A1 mode could appear in the far down-
stream.
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Figure 6: Comparison between subharmonic modes of S1
and S2.
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3D. Three-dimensional temporal direct nu-
merical simulations were performed to investi-
gate flow structures and noise generation due
to 2-D symmetric (2-D S2) and 3-D antisym-
metric (3-D A1) modes. The mean profile was
forced with the most unstable 2-D and a pair
of oblique 3-D modes. The amplitude of the
disturbances was about 1% of the jet veloc-
ity. The simulations with two initial conditions
were carried out. In Case 1, the amplitudes of
the 2-D and 3-D disturbances (§ = +51) were
1% and 0.5 % of the jet velocity. In Case 2, the
amplitudes of the 2-D and 3-D disturbances
(0 = £51) were 1% of the jet velocity.
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Figure 7: Time development of mode’s kinetic energies for
52 2-D mode(2,0), Al 3-D mode (1,1) and (0,2); (a) Case 1,
(b) Case 2 for Mc=1.13 and Re=1000.

Figures 7 shows the time development of
mode’s kinetic energies. In this Mach num-
ber, linear growth rate of 3-D Al mode (1,1) is
larger than 2-D S2 (2,0) one, however in Case 1
the energy growth of 3-D modes is suppressed
by grown up 2-D mode. In Case 2, the energy
of 3-D Al mode became close to the 2-D S2
one, and 3-D A1l mode is suppressed weakly at
around t=40 (In case 1,it was around t=36),
while the 2-D S2 one has been amplified. Fol-
lowing the suppression of the 3-D Al mode,
in both cases, (0,2) Fourier component rapidly
grows in comparison with other mode, later it
becomes a dominant mode sooner in Case 2.
The development of (0,2) mode leads to 3-D
structures in the plane jet.

(b)

Figure 8: Iso-surfaces of (a) pressure; (b) dilatation at t=64
for Casel, Mc=1.13 and Re=1000.

Figures 8 shows the developed structures
of 3-D flow motions from the prescribed ini-
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tial condition for the Case 1 at t=64. This
time, the energy of the S2 2-D mode saturates.
Right and left figures show the pressure and
dilatation fields respectively. In the right fig-
ure, the maximum value of the pressure exists
around the jet center plane, as linear stability
eigenfunction predicted it, but no significant
three-dimensional structures were found. As
for the acoustic filed, the very strong dilata-
tion is formed around the jet center plane but
the acoustic filed is weak in the far field.

(a) (b) ()

Figure 9: Iso-surface of second invariant of velocity gradient
tensor, @ = 0.1, at (a) t=80, (b) t=120 and (c) t=152 for
Casel, Mc=1.13 and Re=1000.

(2)

Figure 10: Iso-surfaces and contourplots of pressure at (a)
t=80 and (b) t=120 for Casel, Mc=1.13 and Re=1000.

Figures 9 and 10 show the 3-D vortical struc-
tures and pressure fields for Case 1, respec-
tively. Figure 9 presents a successive snap
shots of the second invariant Q structures at
t=80, 120 and 152. Note that a potential core



exists at t=80. At t=120, however, 3-D oblique
modes are dominant, as shown in Figures 7, the
potential core disappeared. The complicated
structures of vortex tube are formed at t=120.
At t=152, the tube-like structures spread out-
side. In Figure 10, due to the 3-D structure
formation, the pressure fluctuations are ob-
served outside at t=120, although no pressure
fluctuation in the far field is observed at t=80.
Figures 11 and 12 show the dilatation fields
and the v fluctuations averaged in the x-z plane
for Case 1 and Case 2, respectively. Note
that acoustic waves of divu propagate outside
around t=80 for Case 1 and t=>50 for Case 2.
Figures 12 shows that the corresponding v fluc-
tuations appear in the far field at that time.
Around t=80 for Case 1 and t=>50 for Case 2,
the A1-3D and/or (0,2) modes become domi-
nant and the sound field can be observed.
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Figure 11: Time developments of mean dilatation

(divu(y,0,0)); (a) Casel and (b) Case2 for Mc=1.13 and
Re=1000.
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Figure 12: Time developments of mean normal velocity

(9(y,0,0)); (a) Casel and (b) Case2 for Mc=1.13 and
Re=1000.

SUMMARY

Linear stability analyses and direct numer-
ical simulations of Supersonic Plane Jet were
performed. From the linear stability study, we
found that the dominant mode depends upon
the Mach numbers. Two-dimensional spatial
DNS show difficulty of pairing of the vortices
in a flow where S2 is dominant. Therefore,
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the generation of the acoustic waves is very
weak. In the three-dimensional temporal DNS,
at Mc=1.13, it was confirmed that the struc-
ture of the flow field depended on the initial
conditions, because the linear growth rates of
the 2-D S2 and 3-D A1l modes were almost the
same. When (0,2) mode becomes dominant,
the dilatation sound fields were observed.
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