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ABSTRACT

The present study aims at showing an example of
shear flow in which small scale perturbations are
directly produced inside strongly organized vortex or
coherent structures. The flow under consideration is
a mixing layer which develops over a cavity in a
high speed flow where it is forced by a low
frequency acoustic resonance. The mixing layer is
observed to organize itself into highly coherent 2D
vortices which have been scrutinized by means of a
conditional LDV technique as in Lyn & Rodi (1995).
When considering the triple decomposition of the
flow velocity which discriminates the "coherent"
motion (phase average) from the random motion, it
is observed that the latter concentrates into the vortex
cores. A detailed analysis of the flow indicates that a
linear elliptic instability mechanism could be
responsible of this small scale production. This
departs from the classical picture where small scale
turbulence is preferentially produced by continual
stretching of three-dimensional vorticity in the
saddle regions between vortical structures. This
difference could be attributed to the highly coherent
organization of the vorticity which is found in a
cavity flow and which is rarely encountered in other
forced mixing layers.

INTRODUCTION

In canonical mixing layers, once coherent structures
are formed through successive pairing of Kelvin-
Helmhotz vortices, one usually observes that small
scale fluctuations are produced through continual
stretching of three-dimensional vorticity in the
saddle regions between the vortical structures, see
Cantwell & Coles (1983) and Hussain & Hayakawa
(1987). This is recognised as the main mechanism
responsible for small scale turbulent production in
equilibrium or forced mixing layers. In particular,
high levels of phase-averaged small scale production
by the Reynolds shear stress are identified in the
saddle regions.

In the flow which develops over an open cavity the
mixing layer acquires a much coherent dynamics due
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to a strong resonant forcing. In a transonic regime,
forcing is due to discrete tones which are
characteristic of a feedback mechanism between the
mixing layer development and the pressure
fluctuations generated at the downstream edge of the
cavity, see Rossiter (1966), Rockwell & Naudascher
(1979). Strong variations of pressure, density and
side forces result from this flow/acoustic resonance.
One of the first database devoted to the flow-field
description of such flows has been recently provided
by Forestier et al. (2001). Visualisations show that
coherent structures are formed after a rapid roll-up of
the separated boundary layer in phase with pressure
oscillations. These highly coherent eddies form at
frequencies lower than the natural shear layer
frequency so that the flow amounts to a shear layer
under a strong low frequency forcing. Same
phenomenon is also observed in similar flows as
impinging jet, jet screech and edge tones. In the case
of high speed jets impinging on a flat plate, Ho &
Nosseir (1981) attributed this formation process of
large scale structures to a ‘collective interaction
mechanism’ described by Ho & Huang (1982). In
this regime, one observes that the strong low
frequency forcing leads to ‘“by-passing” of the
pairing and vorticity stretching mechanisms which
drive the growth of natural or weakly forced mixing
layers (Winant & Browand, 1974). The Kelvin-
Helmholtz eddies merge rapidly due to the forcing
and result in the formation of large scale structures
within small distances. As shown by Forestier et al.
(2001), 'collective interaction’ seems also to hold in
the cavity flows, as already suggested by Gharib &
Roshko (1987).

Small scale perturbations which are superimposed
on the train of periodic eddies represent nearly half
the total kinetic energy of the fluctuations (Forestier
et al., 2001). These small scale structures are
convected from the separated boundary layer (which
is turbulent) and are also produced by the shear.
Using standard conditional procedures to separate
the velocity field into phase averaged and random
parts, one finds that small scale production regions



coincide with coherent structure centres, a result
which departs from what is usually observed in
canonical flows.

Cavity flows constitute a generic problem for aero-
acoustics, aero-optics and aero-elasticity
applications. Understanding how the small scales
develop within such a flow and how they may extract
energy to coherent eddies is an important issue for
the control of such flows.

EXPERIMENTAL SET-UP

The flow is produced by a boundary layer separating
on a deep cavity of aspect L/D=0.42 where
L =50mm is the length of the cavity, D =120mm its
depth and S =120mm, its span, see figure 1. This
experimental set-up is placed in a continuous
transonic wind tunnel whose test section is 100x120
mm’. The free stream Mach number and velocity are
M,=08, U,=258ms™'. The
comprise schlieren visualizations and conditional
analysis of LDV signals controlled by a pressure
signal delivered by a Kulite™ sensor located in the
upstream vertical wall of the cavity (a series of 5
sensors is visible in figure 1). Details are given in
Forestier et al, (1999, 2001). The complete data
comprises  conditional LDV  measurements
performed in several regions. The results shown
below corresponds to the symmetry vertical plane
y=0 and to the horizontal plane z=0, which are

surveyed with a constant mesh size Ax=Az=2mm

measurements

and Ax=Ay=5mm , respectively.

Figure 1: Cavity model

CHARACTERISTIC REGIONS OF THE FLOW
The shear layer expansion is characterised in figure 2

through the variation of the incompressible
momentum thickness 9 :
"y
6= J —(1-—)dz (1)
Ue Ue
Zmin

where zpyn =—12mm and zp,, =12mm correspond

to the vertical location of the lower and upper mesh
boundaries. Normalisation is made with the initial
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value 6y =0.648 mm measured lmm ahead of the

upstream cavity edge. The momentum thickness 6
calculated with (1) may differ from the standard
definition used for free shear layers, e.g.

Zmin = —°, if U(xzmin) and/or

U(x, Zmax)
However, deviations are expected to be small except
near the downstream end of the domain where
interaction with the wall occurs.

Zmax > >

have not reached a constant value.
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Figure 2 : Momentum thickness of the mixing layer. 6y is
the initial momentum thickness at x =~1mm .

From figure 2, three regions may be defined. In
region 1, 0<x/6p <17, the momentum thickness

grows linearly with a growth rate equal to 0.12.
This value is nearly three times larger than that
found in equilibrium free shear layers. A possible
interpretation of this high initial spreading rate is the
‘collective interaction mechanism’ evoked in the
introduction. In region 2, 32<x/6y <60, the growth

rate has decreased to 0.042, a value close to that
found in free turbulent mixing layers. As an
example, Browand and Trout (1985) found

d6/dx=0.034 A with A=AU/2U and U the mean

velocity of the two flows and AU, the velocity
difference. Neglecting the mean flow recirculation in
the cavity leads to A=1. Ho (1986) observed that,
after a ‘collective interaction’, the flow of Ho &
Huang (1982) resumes a classical growth rate
beyond ix/6j =20, a value which may be compared

to 1x/6y ~32 found here with A=1. Detailed

analysis shows that the flow is not self preserving
within region 2 (see Forestier et al., 2001). In region
3, 60<x/6p<77, the momentum thickness

decreases as the flow approaches the downstream
edge of the cavity. The extent of region 3, which is
17 initial momentum thickness, characterises the
influence of the downstream corner. The final
decrease of the momentum thickness in figure 2
results from the break-up of the flow but also from a



lack of spatial resolution when using (1). Region 3 is
characterised by a violent inflow/outflow motion.

CONDITIONAL ANALYSIS

As shown in figure 3, the flow is forced by a highly
periodic pressure fluctuation (of about 155dB),
dominated by the first cavity frequency mode.
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Figure 3 : Spectrum of the pressure signal delivered by a
Kulite™ sensor located on the upstream vertical wall at
x=0,y=0,z2=-35mm.

This leads to the rapid organization of the flow into
three individual vortex structures which travel
through the flow following different trajectories, as
shown in figure 4 where a schlieren picture and a
sample result of the phase averaging are compared.
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Figure 4 :

(a) Contour plots of
spanwise vorticity < Q y>L /U ¢ (phase 20), (b) Schlieren

image

the phase averaged

The standard triple decomposition
u(x,1)=u(x)+i(x,t)+u'(x,¢) is used where u(x)
denotes a temporal average, i(x,), the coherent part
of the fluctuation and u (x,z), the random part. The
phase average is <u > (x,)=u(x)+ii(x,¢). The films
and the velocity field analysis shows that the three
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structures do not merge. Figure 5 shows the case of
phase 17 where two of the structures seen in figure 4
are moving at the same convection velocity. The
pseudo-streamlines in a frame moving at this
convection velocity are sketched in figure 5(a).
These streamlines have been obtained using the
Tecplot™ streamline routine without any further
post-processing. We have indicated the points Cj
and C, which correspond to the position of the
centres of the structures and the point S which
corresponds to the saddle point. The spiral shape of
the first structure (characterized by the centre Cj)
may denote three-dimensional effects. The strong 2D
organization of the flow is illustrated in figure 5(b)
and (c) which show the vorticity distribution in the
vertical plane y=0 and results of measurements
performed in the horizontal plane z =0 . Figures 5(d)
and (e) show that the maximum of random

fluctuation kinetic energy, < u? >/ Ue2 , <w? >/ U ez
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Figure 5 : Contour plots for phase 17 (among 20) of
various phase averages : (a) pseudo-streamlines in a frame
convected at the convection velocity of the two structures,
iso-levels of (b) vorticity <Qy>L /Ue , (c)

~3<W >[dx in the plane z=0, (d) <u2>/U2 (level
increment step of 0.005), (e) < w? >/ U e2 (same

increment step), (f) < —u’w’>/ U 3 (level increment step
of 0.003).

are located within the vortex cores. This is a
common trend to all mixing layer experiments where
such quantities have been characterized. However,

maximum of —<u'w > is usually found in the
saddle regions and not in the structure centers as
observed in figure 5(f).

Production of random perturbation kinetic energy
from the phase averaged mean flow is due to the
following terms < P >=< P, >+< Py > where :

<P,,>=—<u'2>a<u> <w’2>a<w>

ox 0z )
o (d<U> d<W>
<P >=—-<uw > +
oz ox

<P> L/ U2 is shown in figure 6(a) and is found to

be essentially positive with maximum in the vortex
cores. Most of the contribution to < P> comes from
<Py >.
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DISCUSSION

It has been checked that measurement bias, such as
the effect of vortex meandering from period to
period, see Hussain (1986), or seeding particle
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Figure 6 : Contour plots for phase 17 (among 20) of
various phase averages (a) production of random

fluctuations < P > L/ U 3 (b) strain rate < S >2 12 / U 22 ,

where <S>2=<g>:’<g>,g=(2+’2)/2 .

centrifugation, are not responsible for the peculiar
distribution of the shear stress distribution found
here, see Forestier et al. (2001).

Strong small scale fluctuations within the spanwise
vortex cores have been observed in direct numerical
simulations, especially when pairing is suppressed
(see e.g. Metcalfe et al., 1987). A possible physical
mechanism which could promote the production of
these fluctuations is the elliptic instability which
occurs in elliptically shaped streamlines of two-
dimensional flows (see Pierrehumbert, 1986, Bayly,
1988, Moore & Saffman, 1975, Waleffe, 1990). The
role of these instabilities in coherent structures has
been first studied by Pierrechumbert & Widnall
(1982). They have identified the existence of a
broadband  spectrum of  three-dimensional
instabilities, most visible in the central region of the
vortices, which is able to produce small-scale
turbulence. A general theory of these elliptic
instabilities has been established later (see references
above). Elliptic instabilities result from the stretching
of vorticity perturbations by a strain field whose rate
is proportional to the ellipticity of the streamline.
Figure 7 shows that this instability does produce a
distribution of shear stress which is concentrated in
the central region of the vortex. This figure shows
results of the linearised Euler equations in the
asymptotic limit of a weak strain rate (i.e. for a small



deformation of the streamlines, see Moore &
Saffman, 1975). The background flow is a Lamb-
Oseen vortex corresponding to phase-averaged
spanwise vorticity field :

<Q, >(x,z)=exp{—(x2+z2)}, 3)

with a unit characteristic radius and a I'=2x
circulation. One superposes on this flow a strain field
of rate ¢<<1 with an extension axis oriented at 45°
with respect to the vertical. The resulting velocity
gradient reads :

[0 ety
2_[s—y 0] “

where y(x,z) denotes the rotation rate of the vortex,
an evaluation of which is y(x,z)=<Q, >(xz)/2.

Figure 7(a) shows the spanwise vorticity perturbation
field a);, of the most amplified mode of the elliptical

instability. This perturbation grows with the
characteristic time scale 7y =C/e, where C is a
constant close to 0.5 (in the asymptotic limit
gy —0, C=9/16) and exhibits a dipolar structure
which is characteristic of this instability (see
Waleffe, 1990 and figure 8 of Pierrehumbert &
Widnall, 1982). Iso-values of —u’w’ are plotted in
figure 7(b). They look like those obtained in the
experiment: the product —u’w’ is positive and the
maximum is located in the vortex centre. This shows
that the elliptic instability could contribute to a
distribution of the shear stress localised in the vortex
centre, as in the present experiment. However, a
more quantitative check is necessary to comfort this
conjecture. In particular, one must evaluate if the
instability has time to develop within the convection
time scale of the structures. Given a vortex structure

X
labelled S , 75 (x)= j dx[US (x) defines the time the
0

structure takes to reach the downstream position x
with a convection velocity U2 (x). These time scales

have been deduced from inspection of the centroid
paths which are reported in figure 8. Considering the

which

correspond to the downstream limit of region 1 and
to the upstream limit of region 2, as defined in figure
2, the times it takes for a structure to cover these
distances starting from their origin is found to be

el (W /L=05 S (xy U, [L=1

structure S;. Same values are obtained for structure

characteristic ~ distances x; and x,

and for

S, . This leads to the following characteristic time
scales : rf (%) =100us, rf (x5 )=200us . Now, a
crude evaluation of the time scale 7y = C/€,

may be done as follows. Inspection of the shape of
the structures depicted in figure 5(a), shows that they
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Figure 7 : Elliptic instability in the Lamb-Oseen vortex
subjected to a 45° strain : (a) fluctuation of the spanwise

vorticity w;, (x, z, t) of the most amplified mode (arbitrary

levels), (b) shear stress —u’w’(x, z,t) (arbitrary levels).
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Figure 8. Vorticity centroid position versus time : structure
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are elliptical with a typical aspect ratio (ratio
between major and minor axis) E=2 and a slight
incidence. It can be shown that in the central region
of such a strained vortex, the aspect ratio of the
streamlines is E=~,/(y+¢)/(y—¢) where y is the
rotation rate and y>¢e. For E=2, this gives
€[y =3/5. Using y~<Q, >pa /2 for the rotation
rate, a characteristic value is <Qy >pay L/U, =15
for structure S, at the end of region 1, see figure
5(b). This leads to e=3y/5=23kHz. This estimate,

based on the global shape of the flow streamlines, is
supported by comparisons to the phase-averaged
strain rate shown in figure 6(b) : using the above

evaluation ¢ =23 kHz leads to e2r? / U ez =20, a
value close to < § >2 L2/ U2 =17 found in figure
6(b)

correction must be done to account for the effect of
the mesh size on which the exact values of < Q>

in the centre C, of structure S,. Now,

and <S> may depend. The value ¢=23kHz

obtained above is a minimum. Tests have shown that
<Q, >pax may increase by a factor of 2-3 when the

mesh size is decreased by a factor of 8 from
Ax=Az=2mm to 025mm. As a conclusion,

application of a factor of nearly 2 on <Q, > is a

reasonable choice. Applying this factor to € leads to
a new estimation ¢ =45 kHz .



After all, an estimation of the time scale of the
instability is  Teypc =1/(0.56)=45us  to be

compared with rf (%1)=100 us or Tg (xp) =200 us
Consequently, when crossing region 1, initial
perturbations within the structures are amplified by a

factor e? at x= x1. This indicates that the flow is

still at the beginning of the linear regime in this
region. If the flow were initially in a laminar regime,
development of very small initial perturbations with
such a time scale would not be significant. But the
elliptic structures contain energetic
perturbations coming from the turbulent boundary
layer. The strain field associated to the streamline
ellipticity then amounts to a distortion of this
turbulence to which it supplies energy and imposes a
preferential orientation (see Cambon & Scott, 1999).

CONCLUSION

The mixing layer which develops over an open
cavity is subjected to a strong forcing at low
frequency which forces the flow into a train of very
coherent eddies. The kinetic energy of the random
perturbations is concentrated in the central region of
the structures, as it is observed in other studies on
forced mixing layers. This may result from transport
of turbulence produced by stretching in the saddle
regions, as advocated by other authors, but also by
the local influence of elliptic instabilities. A better
conservation of this energy due to decrease of
dissipation by rotation, a mechanism which
characterises highly swirling flows, can also be
advocated. But among all the above mentioned
mechanisms, only the elliptic instability mechanism
seems compatible with the additional observation of
a Gaussian like distribution of the shear stress
—<uw'w’> within the vortex cores. This would
indicate that this mechanism plays an important role
in the coupling between large and small scales in this
flow where turbulence is not yet fully developed.
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