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ABSTRACT

A new computational method for investi-
gating interactions between bubbles and tur-
bulence has been developed. Both liquid and
gas phases are treated as incompressible con-
tinuum fluids and solved by a finite volume
method, while the interface between the phases
is resolved by a front-tracking method. The
accuracy of the method is validated for the
problem of a single rising bubble. The method
has been applied to a direct numerical sim-
ulation (DNS) of a fully developed turbulent
channel flow containing bubbles. The results
of DNS computations suggest that large bub-
bles can be preferable for the frictional drag
reduction at low Reynolds numbers.

INTRODUCTION

About 80% of the total propulsion resis-
tance of a ship like a tanker is due to fric-
tion with the surrounding water. It will be
a great contribution to the environment to re-
duce the fuel consumption of ships as a means
of mass transportation by reducing the fric-
tional drag. There are several devices for re-
ducing the frictional resistance such as passive
type devices like riblets or active type devices
like the combination of micro sensors and actu-
ators. Among these methods, we consider the
microbubble injection method is most suitable
for ships.

There is relatively large extent of litera-
ture on the microbubble drag reduction. Mc-
Cormick et al. (1973) found that the drag of
a submerged body was reduced by microbub-
bles produced by electrolysis. Madavan et al.
(1985) investigated the relation between the
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drag reduction and the mean void ratio for
a developing turbulent boundary layer on a
flat plate. Guin et al. (1996) experimentally
showed that the drag reduction is better corre-
lated with the void fraction near the wall than
the mean value. Takahashi et al. (1997) inves-
tigated the microbubble drag reduction for a
fully developed turbulent boundary layer in a
channel.

The drag reduction rate for given amount
of microbubbles must be improved in order to
make the microbubble drag reduction method
fit for practical use. For this purpose, it is im-
portant to understand the mechanism of the
microbubble drag reduction. Although de-
crease in the mean density, increase in the ef-
fective viscosity, and modulation of turbulence
are assumed to be responsible, convincing an-
swers are still missing.

For developing an advanced model to ex-
plain and predict the microbubble drag re-
duction, more detailed experimental data is
needed. However, since the presence of mi-
crobubbles strongly hinders measurements by
LDV or PIV, the numerical simulation is ex-
pected to be an effective alternative approach.
In this study we aim at obtaining a detailed
data of the velocity field of turbulent flow mod-
ified by microbubbles. The numerical simula-
tion is also useful for investigating the influ-
ences of the factors such as bubble size, bubble
deformation or buoyancy, since it is very diffi-
cult to control these parameters independently
in experiments.

Two-phase flow simulation methods are
classified into three categories. The first way is
to solve phase-averaged equations of fluid mo-
tion, and the second way is to model bubbles



by point force distributions. These approaches
are valid for predicting macroscopic feature of
the flow, or in particular cases when the size of
bubbles can be assumed infinitely small. The
third way is to simulate the two-phase flow
directly with implementing the continuity of
mass and momentum across the air-water in-
terface. Altough the computational load is
highest, only this method can resolve the full
interactions between two phases. Figure 1
shows a snap photo of the flow dealt with in
this study. It is noted that the size of bubbles
is relatively large, and the effect of the defor-
mation of bubbles is supposed to be significant.
Therefore, we adopt a direct numerical simula-
tion method. Kanai and Miyata (1998) carried
out a direct numerical simulation of turbu-
lent Couette flow containing bubbles by use of
the marker density method. We apply a simi-
lar computational method to a fully developed
turbulent channel flow containing bubbles.

Figure 1: Photograph of bubbles in the channel (Takahashi
et al., 1997)

NUMERICAL METHOD

Governing equations

Both water and air phases are treated as in-
compressible fluids, and the continuity of stress
is implemented at the interface. The governing
equations for each phase are the Navier-Stokes
equation,
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where x;, u;, and p are the Cartesian coordi-
nate, the velocity components, and static pres-
sure respectively. The fluid density p and the
kinematic viscosity v take values of either wa-
ter or air depending on whether the center of
the computational cell is water or air.

Interface tracking method
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There are several methods for expressing the
moving interface between two fluids, such as
the VOF method (Hirt and Nichols, 1981), the
level-set method (Osher and Sethian, 1988),
and the front-tracking method (Unverdi and
Tryggvason, 1992). The VOF and level-set
methods are categorized as the front capturing
methods which track the movement of volume
and find the interface in an indirect way. One
of the merits of the methods of this type is that
collision and breakup of interfaces are easily
treated. On the other hand, the front-tracking
method tracks the interface directly allowing
more accurate calculation of the curvature of
the interface, although treatment of surface re-
structuring is complicated. We use the front-
tracking method, since accurate calculation of
the interface curvature is very important for
the case investigated in this study.

Each bubble is expressed by its center posi-
tion and radius distribution around the cen-
ter as shown in Figure 2. Marker particles
are placed on each bubble regularly on a two-
dimensional spherical grid (8, ¢). In the be-
ginning of each time step, the positions of the
marker particles are updated using the veloc-
ity interpolated from the rectangular grid for
solving the Navier-Stokes equations. After the
marker particles are moved, the position of the
center is updated. Then the radius at each
point (6, ¢) around the new center is calcu-
lated and expanded in a series of spherical
harmonic function,
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in which NV is the number of the deformation
modes considered, P, is Legendre associate
polynomial. N is set to 8 in this study. The
coefficients Ay, and B,,, are obtained by nu-
merical integrations.

The primary merit of this merit is that the
curvature of the interface is accurately com-
puted with relatively small number of grid
points. Another advantage is that deforma-
tions of high wave number modes, which give
rise to numerical instabilities, can be filtered
out. Whereas the shortcomings are that the
radius must be a single-valued function of the
altitude and latitude. Therefore, this method
cannot deal with deformations beyond a cer-
tain limit, collision or separation of bubbles.

Solution algorithm
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Figure 2: Schematic sketch of the front-tracking method

A second-order finite volume method is used
for the spatial discretization on a rectangular
grid system fixed to the space, and a second-
order semi-implicit fractional step method is
used for the time integration. At the beginning
of each time step, the positions and shapes of
bubbles are determined, and the values of den-
sity and the kinematic viscosity in each cell are
set to values of water or air. Whether a cell-
center point is inside a bubble or not is judged
from the expression (3). Then the dynamic
boundary condition is set in cells containing
interfaces. The surface tension is treated as a
pressure jump across the interface. The cur-
vature of the interface is calculated from the
expression (3) analytically. Using this interface
boundary condition the momentum equations
(1) are semi-implicitly integrated, and then
corrected by solving a Poisson equation for the
pressure. The Poisson equation for the pres-
sure is solved by a multigrid method.

SINGLE RISING BUBBLE

The accuracy of the computational method
is examined for the problem of a single bubble
rising in quiescent water. Computations are
carried out using 64 x 64 x 64 cells for a domain
of 4 diameters cube, which moves with the cen-
ter of the bubble. Figure 3 shows a comparison
of the computed drag coefficient Cp and an
empirical formula proposed by Tomiyama et al.
(1995). Bubbles smaller than 1 mm are almost
spherical and rise straight up, while larger bub-
bles are deformed and show non-axisymmetric
swing motions. Computations reproduce this
behavior very well, and the calculated values of
Cp are in good agreement with the empirical
formula. Figure 4 shows computed ellipsoidal
shape of the bubble. The flatness is confirmed
to be also in good agreement with experiments.
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Figure 3: Drag coefficient of a single rising bubble in clean

Figure 4: Computation of a single rising bubble in water

DNS OF A TURBULENT CHANNEL FLOW
CONTAINING BUBBLES

Condition of computations

A fully developed turbulent channel flow
containing bubbles is investigated by the
present numerical method. Before introduc-
ing the bubbles, a fully developed single-phase
turbulent channel flow at the Reynolds num-
ber Re, = 180, based on the friction velocity
u, and a half width of the channel H, was com-
puted. The size of the computational domain
is set to 6.4H x 2H x 3.2H, in the stream-
wise, wall-normal and spanwise directions re-
spectively. A periodic boundary condition is
used in the streamwise and spanwise direc-
tions. The x-, y- and z- axes are taken in
the streamwise, wall-normal and spanwise di-
rections respectively. The profiles of computed
mean velocity and turbulence intensity agree
well with the DNS results of Kim et al. (1986)
as shown in Figure 5.

A total of eight DNS runs are performed
for investigating the influences of the param-
eters such as the void ratio, the bubble size,
buoyancy, and surface tension on the drag
reduction. The parameters are summarized
in Table 1. Although the Reynolds number
Re, = 180 is an order of magnitude smaller,
the other parameters are on the same order as
in the experiment by Takahashi et al. (1997).
When the Reynolds number is small, the in-
crease in the effective viscosity is supposed to
dominate over the decrease in the density and
the modulation of turbulence. Therefore, the



Run We 1/Fr? DY Ng a(%) Cf

0 - 0 - - 0.0 1.0

1 9.2 0 90 54 8.6 1.23

2 37.0 0 90 54 8.6 1.16

3 9.2 0 90 18 2.9 1.12

4 37.0 0 90 18 29 1.12

5 9.2 6.8x10% 90 18 2.9 1.11

6 7.3 0 71.4 36 2.9 1.15

7 73 54x10% 714 36 2.9 1.12

8 11.6 0 113 9 2.9 1.10
Rer Reynolds number Rer = u-H/v
We  Weber number We = pU2D/c
o Surface tension coefficient

Fr Froude number Fr=Umn/v9D
g Gravitational acceleration

D Bubble diameter

Dt  Bubble diameter in viscous unit Dt = Du,H/v
Np Number of bubbles

o Mean void ratio

Cy Normalized friction coefficient

Table 1: Condition of computations

frictional drag is also supposed to increase.

Computation with bubbles are initialized
with the result of the single-phase flow compu-
tation, and bubbles are suddenly introduced as
shown in Figure 6 at the non-dimensional time
t¥ = w?t/v = 0. The mean pressure gradient
is automatically adjusted so that the volume
flow rate is kept constant.

Results

Figure 7 shows the time histories of the nor-
malized mean wall shear stress C'y for the DNS
runs 0 and 3 and 6. After the bubbles are
introduced at t* = 0, the mean wall shear
stress increases and reaches a steady level at
tT = 400 ~ 800. The average values of Cf af-
ter reaching the steady level are shown in the
Table 1.

Figure 8 shows the values of Cy versus four
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Figure 5: DNS of single phase channel flow

Figure 6: Initial distribution of bubbles at tt =0

parameters a, DT, Fr and We. The influence
of the void ratio « for a fixed diameter and sur-
face tension at zero gravitational acceleration
is shown in Figure 8(a). The value of Cf is
increased as the void ratio « is increased, since
the increase in the effective viscosity dominates
over the decrease in the density and the modu-
lation of turbulence at low Reynolds numbers.
Figure 8(b) shows that Cj is decreased with
increasing bubble diameter D™ for a fixed void
ratio @ = 2.9% at zero gravitational accelera-
tion. At this condition, the presence of bub-
bles enhances the turbulence intensity, and as
shown later the increase in the turbulence in-
tensity is larger with smaller bubble diameter
because of larger interface area. The influence
of the gravitational acceleration in the direc-
tion normal to the walls decreases C'y as shown
in Figure 8(c) for two diameters at a fixed void
ratio @« = 2.9%. When the gravitational ac-
celeration is present, bubbles are concentrated
toward one wall as shown in Figures 10 and
11. This concentration of bubbles is supposed
to suppress turbulent momentum transport in
the wall-normal direction. Figure 8(d) shows
that effect of the surface tension on Cf is neg-
ligible, although the deformation of bubbles is
very different as shown in Figure 12.

Figure 9 shows profiles of the turbulence
intensity components. The wall-normal and
spanwise components are increased by the
presence of bubbles, while the peak of the
streamwise component is decreased in the high
void ratio case. This tendency qualitatively
agrees with the measurement by Kato et al.
(1999). The increase in the wall-normal and
spanwise intensities is larger at Dt = 71 than
at DT = 113 at the same void ratio of a =
2.9%.

The relation between the structure of turbu-
lence and bubbles in the case Run-6 is shown in
Figure 13, in which vortex structures are visu-
alized by isosurfaces of the second invariant of
the velocity gradient tensor ), which is defined
as

1
Q = 5 (WiiWi; — 5i;5i5) (4)
_ 1 8uz Bu]'
Wi =3 (axj - axi> )
N 1 8uz BUJ'
Sij = 2 <8mj + 8:51-) (6)

The structure of the wall turbulence is very
similar to that without bubbles, suggesting
that direct influence of bubbles of this size on
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the structure of wall turbulence is weak. Fig-
ure 14 shows the average value of @ in the
water region versus the distance to the nearest
bubble surface. In the region around bubbles
the average value of () takes negative value
meaning that bubbles tend to be in high shear
region, while the high value of @ at the surface
of bubble is due to the vorticity resulting from
the curvature and the boundary condition at
the surface. This statistics suggest that there
is interactions between the vorticity attached
to the bubble surface and the structure of tur-
bulence.

Figure 7: Time history of the normalized friction coefficient
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Figure 8: Influence of a, Dt, Fr and We on the friction
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SUMMARY AND CONCLUSIONS

the

A computational method for investigating
interactions between bubbles and tur-

bulence has been developed in this study.

The method employs a special front-tracking
method, which tracks individual bubbles by

the center positions and radius distributions.

The advantage of the new method over front-

capturing methods is that the interface curva-

ture can be calculated more accurately for a

given grid resolution.
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Figure 9: Profiles of turbulence intensities
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These results suggests
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