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ABSTRACT

A DNS of turbulent channel with a ridged
bottom has been carried out to simulate the
sand ribbons over the river bed. Two cases are
considered; one is a ridged closed channel with
ridged top and bottom walls and the other is
the one with a ridged bottom and a free top
surface. The latter case reproduces well the
flow structure around the ridge in the actual
river. A low speed streak over the ridge is
captured by the conditional sampling and its
structure is discussed.

INTRODUCTION

Turbulent flows over complex geometries are
often encountered in environmental and engi-
neering problems. For example, sediment is
concentrated over a river bed to form longi-
tudinal ridges called as ”sand ribbons”. Nezu
and Nakagawa (1984) (hereafter, NN) investi-
gated experimentally the turbulent structure of
secondary flows. They used not an open water
channel but a closed air conduit, in which the
ridges were attached symmetrically on both
top and bottom walls. This was because a
better measurement accuracy of the secondary
flows could be obtained with the use of the hot-
wire anemometer in the air duct. Kawamura
and Sumori (1999) (hereafter, KS) carried out
a DNS of turbulent flow in a ridged channel
with the same configuration as the experiment
of NN. KS carried out the DNS on the con-
dition that the pitch of the ridge was equal
to the channel half width §. They obtained a
good agreement with the experimental results.
In the actual river bed, however, the pitch of
the ridge is known to be about 24. Accord-
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ingly, the present paper deals with the ridge
wall with the pitch of 24.

Two cases of DNS have been performed
(see Figure 1). In the first one of Case A,
the ridge elements were attached symmetri-
cally onto both top and bottom walls in order
to compare the results with the experiment by
NN. In this case, the mid-height of the channel
is a statistically symmetric plane but instanta-
neously not.

In the second case of Case B, we consider an
open channel, that is, the ridge is attached only
on the bottom surface and top is free, which is
more similar to the actual river.

Various turbulence statistics such as mean
the velocity distributions of streamwise, ver-



Table 1: Computational conditions

Case

A I

Grid

Staggerd grid

Coupling algorithm

Fractional step method

Time advancement Viscous terms

Crank-Nicolson method (y-direction)

Others

Adams-Bashforth method

Spatial scheme

Convective terms

2nd-order Central scheme (Consistent)

Viscous terms

2nd-order Central scheme

Boundary condition | z , z direction Periodic Periodic
Upper wall Non-slip Free-slip
Lower wall Non-slip Non-slip
Grid numger (z X y X 2) 48 X 96 x 72 192 x 96 x 144
Computational volume 1.25pd X 26 x 26 | 2.5pd X 0 x 2d
Spatial resolution Azt 12.3 12.3
Ayt 0.19 — 8.67 0.11 — 7.65
Azt 4.17 2.08

Time Step

At = 0.00088/u,

Table 2: Conditions of NN’s experiment and present DNS

Re- | Ly | L. T T r3 Geometry Field
Experimant (NN,1984) | 582 | 26 | 26 | 0.256 | 0.56 | 0.125§ | air duct of ridged closed channel
Present | Case A 144 26 | 26 | 0.260 | 0.520 | 0.1259 ridged closed channel
Case B 146 ) 26 | 0.256 | 0.56 | 0.1258 ridged open channel

tical and spanwise directions are obtained. A
low speed streak over the ridge is captured by
the conditional sampling and its structure is
discussed.

NUMERICAL PROCEDURE

The governing equations for an incompress-
ible flow transformed into the body-fitted co-
ordinate system are given by
the continuity equation:

%5‘2—,6 (Ju*) =0

and the Navier-Stokes equation:
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where J is the Jacobian of coordinate transfor-
mation, UF the contravariant velocity and g
the ”"mesh skewness tensor”.

The generated grid is shown in Figure 2 for
Case B, in which the top is a free surface where
a rigid but free-slip surface is assumed.

Equations (1) and (2) are nondimensional-
ized by the channel width h and mean fric-
tion velocity (u,) on the bottom wall. The
Reynolds number Re, defined as Re, =
(ur) 0/v is approximately 144. This Reynolds
number Re, is almost equal to the Reynolds
number in the DNS of KS. The flow is driven by
the mean pressure gradient P, in the stream-
wise direction.
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Figure 3 : Mean streamwise velocity contour

For the time integration, we employ the
second-order Adams-Bashforth Method for
convective terms and second-order Crank-
Nicolson Method for the y direction in viscous
terms. The convective terms in (2) are dis-
cretized by using the second-order consistent
central scheme extended to the body-fitted
coordinate system on the staggered grid. The
turbulence statistics are obtained by averaging
the flow field in the streamwise direction
and in time. The computational conditions
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Figure 4 : Mean secondary velocity vectors

are given in Table 1. Table 2 compares the

conditions of NN’s experiment and the present
DNS .

RESULTS

Four locations are specified to present the
obtained results.
1. ridge center : z/6 =0
2. ridge corner : z/§ = 0.125
3. ridge foot : z/6 = 0.25
4. trough center: z/0 = 1.0

Mean velocity

Figure 3a shows the contours of streamwise
mean velocity in y-z plane. The contours are
distorted by the ridge. The distortion becomes
less eminent away from the wall. These results
are in good agreement with experimental result
obtained by NN (see Figure 3b), although both
Reynolds numbers are rather different.

The mean secondary velocity vectors in y—z
plane are shown for Case A in Figure 4(a).
The existence of a pair of nearly symmetri-
cal streamwise vortices, which is called as the
cellular secondary current, is observed in both
sides of the ridge. The upflow occurs above
the top of the ridge. The downflow takes place
above the trough and flows obliquely towards
the ridge foot. This induces two vertices, i.e.
the one near the channel center and the other
close to the trough surface. If the secondary
flow of this type exists, it means that a once
sedimented ridge would be destroyed by the

385

¥/é

Present
I - KS
L e ridge center
0.8 / — —ridge corner
or / P NG RS ridge foot
L / i —-— trough center
! :
0.6+ i ; 7
Eo
04 -
\. R
L N :
N\ B
0.2¢ \ /{/ - 7
0 1 3 a 1 1 1
-0.01 0 0.01 0.02 0.03
V/ax
(a) Vertical
y/8
1
0.8F
0.6
0.4
0.2
-8.03

(b) Spanwise

Figure 5 : Mean velocity profiles

secondary flow. For this reason, Case A can-
not be a good simulation of the actual river.

Figure 4(b) shows the mean secondary ve-
locity vector in y — z plane for Case B. Similar
to Case A, the cellular secondary current exits.
In this case, however, the downflow impinges
directly to the trough center wall. Accordingly,
only one secondary vortex is induced in Case
B.

For the sand ribbon to be sedimented,
the direction of the secondary flow over the
riverbed must be towards the ridge foot in av-
erage. Otherwise, even if a ridge were once
sedimented, it would be destroyed. Thus, it
can be concluded that the Case B, with an
assumption of the free top surface, indeed sim-
ulates better the actual riverbed. This is due
to a difference in the strength of the secondary
velocity between in Cases A and B.

Figure 5 shows the distribution of the ver-
tical and spanwise mean velocities at some
selected spanwise locations. The secondary ve-
locity of Case B is stronger than that of Case
A. This can be explained as follows. The center
plane of Case A is symmetric only statistically,
that is, the instantaneous vertical flow can pen-
etrate the center plane. On the other hand,
in Case B, the top surface is a rigid free sur-
face, thus the upward flow gives its energy to
the span and streamwise components. The so-
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Figure 6 : Turbulent kinetic energy : (a) Contors ; (b),(c),(d) Budget along a vertical line

called splatting takes place. This causes the
stronger spanwise flow in the free surface of
Case B than in Case A. Thus the secondary
cellular motion is more enhanced in Case B,
As the result, the downward flow in the trough
center penetrates down to the bottom surface.

Turbulent energy

Figure 6(a) shows countours of the turbu-
lent kinetic energy. Its maximum peak exists
not above the ridge center but above the ridge
corner. The peak becomes minimum above the
ridge foot.

The transformed of turbulent kinetic energy
equation into the body-fitted coordinate sys-
tem can be written as
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Figures 6(b) ~ (d) show the turbulent ki-
netic energy budget distribution at the three
locations. FEach term is normalized by the
mean friction velocity. The maximum value
of the production term is largest at the ridge
corner and smallest at the ridge foot. This ex-
plains the distribution of the turbulent kinetic
energy discussed above.

High and low speed flow streaks

Figure 7 shows the instantaneous velocity
fields visualized for high and low speed streaks.
The gray is the low speed region and the black
is the high speed one. The streak emerges near
the wall as in the plane channel flow. They
appear more often around the ridge than over
the trough.

The low speed region often rises up from
the ridge top towards the free surface. When
the strong upflow occurs, the low speed region
over the wall reaches near the free surface. To
capture its structure, the upward motion has
been conditionally sampled. That is, the three
velocity components are stored only when the



Figure 7 : High and low speed regions
(Black:u/T > 2.0, Gray:u't < —2.0)

vertical velocity exceeds its ensemble average
at a sampling point. A sampling point is as-
signed at above the ridge center and the mid
height between the bottom wall and free sur-
face (see Figure 8).

The obtained flow field is shown in Figure 9,
where gray is the low speed region, black the
high speed one. The low speed streak emerges
above the ridge center and is accompanied by a
pair of the high-speed streaks in its both sides.
No other structure can be found than this one
set of stresks. The side view of the low speed
streak is illustrated in Figure 10. The sam-
pling point is given by a cross in Figure 10.
The figure indicates that the low speed region
is first almost parallel to top of the ridge sur-
face. From near the mid-height of the channel
depth, however, it becomes obscure and rises
almost vertically upwards. Four successive sec-
tions are shown in Figure 11, which confirms
the above observations.

The conditionally sampled velocity field in
the y-z plane is given in Figure 12, where the
velocity vectors less than umaz X 1072 elimi-
nated to avoid the complication. Three vertical
sections at (c)xg — 0.649, (b)zo — 0.320 and
(a)xo are illustrated, where ¢ is the samplihg
point. At the upstream of the sampling point
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in Figure 12(c), a pair of small vortices ap-
pear at the height of y/0 = 0.3. The vortex
pair then grows and rises up downstream up
to y/d = 0.5 as seen in Figure 12(a).

The center of the vortex is located roughly
at the mid-height of the channel depth. Ac-
cordingly, the upward flow is concentrated up
to the mid-height and then diversified towards
the free surface. This explains the reason why
the low speed streak is confined in a narrow re-
gion at the mid-height of the channel and then
suddenly rises almost vertically upwards from
there.

Figure 13 shows a combination of the calcu-
lated second invariant and high and low speed
regions. It emerges near the sampling point
and rises up obliquely. The second invariant
of the velocity gradient tensor, which is often
used to detect the vortex region, is obtained
from the conditionally averaged three dimen-
sional velocity field. The detected vortex exists
between the low and high speed regions. The
front of the low speed region is wrapped by
high value of the second invariant of velocity
gradient tensor.

Figure 14 shows the component of stream-
wise(w,) and spanwise(w,) vorticity vectors,
where the gray is w, and the white w,. The
streamwise vortex w, takes place on the both
sides of the ridge. It arises from the cellular
secondary current. Near the samlping point,
both streamwise vortices are rising up and tend
to merge with each other. This phenomenon
can be confirmed by a comparison with Figure
12. The spanwise vortex w, emerges above the
ridge center near the sampling point. It ro-
tates clockwise if observed from the positive z.
The second invariant of velocity gradient ten-
sor arises from this two vortices. The captured
second invariant indicates a typical shape of
the so-call horseshoe vortex.
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high and low speed region

Figure 13 : A set of high and low speed streaks
(Black is high speed streak, Gray is low speed streak)
and second invariant of velocity gradient tensor (White)

Figure 14 : Vorticity vector component
(Gray:wg, White:w)

Figure 11 : Successive sections of conditionally sampled
high and low speed contours
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