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ABSTRACT

A direct numerical simulation is performed
for a turbulent concentric annular pipe flow
at Rep, = 8900 for two radius ratios (R;/R2
=0.1 and 0.5). The main emphasis is placed
on the transverse curvature effect on near-
wall turbulent structures. Near-wall turbulent
structures close to the inner and outer walls
are scrutinized by computing various turbulent
statistics.

INTRODUCTION

Annular pipe flow is important in engineer-
ing applications such as heat exchangers, gas-
cooled nuclear reactors and drilling operations
in the oil and gas industry (Nouri et al., 1993).
Also, annular pipe flow provides insight into
the general problem of fully-developed turbu-
lent shear flows. In the case of a concentric
annular pipe flow, two boundary layers exist
which have different distributions of turbulent
quantities. Moreover, pipe and channel flows
are the limiting cases of annular pipe flow.

A literature survey reveals that studies of
turbulent concentric annular pipe flows with
curvature normal to the mean flow are rela-
tively scarce. Nouri et al. (1993) performed
an LDV experiment in concentric and eccentric
annuli for a radius ratio (o = 0.5). Satake and
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Kawamura (1993) performed a large eddy sim-
ulation of concentric annular pipe flows with
three radius ratios (@ = 0.02,0.04 and 0.1).
They focused on the identification of vortical
structures near the inner wall. Azouz and Shi-
razi (1998) evaluated several turbulent models
to predict the turbulent flow in concentric an-
nuli.

The objective of the present study is to elu-
cidate the transverse curvature effect on near-
wall turbulent structure in concentric annular
pipe flow. Toward this end, a direct numerical
simulation is performed for a turbulent concen-
tric annular pipe flow for two radius ratios («
=0.1 and 0.5), which exemplify the situations
of strong and weak curvature effects.

NUMERICAL PROCEDURE

For an incompressible flow, the nondimen-
sional governing equations are

8ui 0 ap 1 0 auz

+ A UiUj = _3—.’1;2' + Eé-a—ggg

i} 1
ot 0z (1)

Ou;
where z; are the cylindrical coordinates and
u; are the corresponding velocity components.
All the variables are non-dimensionalized by
a characteristic length (§) and velocity scale
(Un) and Re is the Reynolds number.
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Figure 1: Schematic diagram and coordinate system.

a 0.5 0.1
AzT 14.30 21.07
(R12A6)T 3.75 0.98
(R200)T 7.10 7.88
Art 0.25 0.30
ArF 0.24 0.24
Artas 12.96 15.27

(Ny,Ng,N.) | (65,128,192) (65,256,128)

Table 1: Grid resolutions.

The governing equations (1) and (2) are in-
tegrated in time by using a fully implicit de-
coupling method, which has been proposed by
Kim et al. (2000). All the terms are advanced
with the Crank-Nicolson method in time and
they are resolved with a second-order central
difference scheme in space.

A schematic diagram and a coordinate sys-
tem of the flow configuration are shown in Fig.
1. The Reynolds number based on the bulk ve-
locity (Up,) and the hydraulic diameter (D)
is Rep, = 8900. The computational length
in the streamwise direction is L, = 18§ for
a = 0.5and L, = 15§ for « 0.1, respec-
tively. Periodic boundary conditions for veloc-
ity components are applied in the axial and
circumferential directions. A no-slip bound-
ary condition is imposed at the solid wall. As
for the computational domain, a full domain
is chosen for a = 0.1. However, the compu-
tation is conducted in only one-quarter of the
full cross-section for a = 0.5. To illustrate the
adequacy of the computational domains, two-
point correlations of the fluctuating streamwise
velocities in the streamwise (z) and azimuthal
(@) directions are investigated.

The detailed grid resolutions for two cases
are listed in Table 1. The computational time
step used is 0.0406/U. and the total averag-
ing time to obtain the statistics is 6006/U, for
both cases. Here, U, is the laminar centerline
velocity. A hyperbolic tangent distribution is
used for a clustering of grid points in the wall-
normal direction.
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a 0.5 0.1

Rep, 8900 8900

Res 3355 3487

Re, (Inner) 153 180

Re, (Outer) 144 144
Cy (Inner) 9.41 x 103 1.30 x 102
Cy (Outer) 8.49 x 1073  8.46 x 1073

Uc/ur (Inner) 22.09 19.44

Uc/ur (Outer) 23.26 24.10

Um /ur (Inner) 14.65 12.40

Um /ur (Outer) 15.43 15.38

Table 2: Mean flow parameters.

RESULTS AND DISCUSSION

To ascertain the reliability and accuracy of
the present numerical simulation, the mean
velocity distributions normalized by the bulk
velocity are compared with the experimental
data of Nouri et al. (1993) in Fig. 2. Agree-
ment with the experimental data is satisfac-
tory, although a slight deviation is observed
in the center region. It is interesting to note
that the integration of the measured profiles
in the radial direction does not yield a value
of unity while that of the numerical profiles
shows 1.0. This tendency was also pointed out
in the previous numerical investigation (Azouz
and Shirazi, 1998). When rescaled by a pro-
cess of normalization, the numerical prediction
is in excellent agreement with the experimental
data. Note that the positions of the maximum
velocities are skewed toward the inner wall in
both cases. Several mean flow parameters ob-
tained from the present simulation are sum-
marized in Table 2. Here, Reg is based on the
laminar centerline velocity (U.) and the half-
width (4) between the inner and outer wall.

Comparison is extended to the logarithmic
velocity profiles in Fig. 3. In Fig. 3(a), a slight
discrepancy between the profiles of the inner
and outer walls appears only in the region of
yT > 100. In Fig. 3(b), however, the devia-
tions are significant and the slope of the inner
profile is lower than that of the outer profile in
the logarithmic region. This may be attributed
to the curvature effect, which is caused by the
decrease of the radius of the inner cylinder.

Root-mean-square (r.m.s.) distributions of
the fluctuating velocities, normalized by the
friction velocity (u,), are exhibited in Fig. 4.
A comparison between the inner and outer
walls indicates that turbulent intensities of the
inner wall are smaller than those of the outer
wall. This tendency is pronounced at oo = 0.1.
The smaller turbulent kinetic energy in the
inner wall is due to the transverse curvature
effect. Since the surface area of the inner wall
is smaller than that of the outer wall, the inner
wall supplies relatively less turbulent kinetic
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Figure 2: Mean velocity distributions.
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Figure 3: Mean velocity distributions for the law of the wall.

energy than the outer wall to the same volume
of flow.
The Reynolds shear stress (—v,v.) and to-

tal shear stress (—vlv! + ﬁ%) in the global

coordinate are shown in Fig. 5(a). Here, y and
v, denote a distance from the outer wall and a
velocity component normal to the outer wall,
respectively. In Fig. 5(a), distributions of the
Reynolds shear stress and total shear stress are
asymmetric, similar to those of the mean veloc-
ities in Fig. 2. It is interesting to note that the
positions of zero total shear stresses are closer
to the inner walls than those of the maximum
velocities (see Fig. 2). Furthermore, the distri-
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Figure 4: Root-mean-square velocity fluctuations. (a) axial
velocity, (b) normal velocity and (c) azimuthal velocity.
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Figure 5: Distributions of Reynolds shear stress and total
shear stress.

butions of the total shear stresses are slightly
curvilinear due to the curvature, while these
are linear in pipe and channel flows. Profiles
of the Reynolds shear stress in the wall coor-
dinate in Fig. 5(b) suggests that the Reynolds
shear stress near the outer wall is larger than
that near the inner wall.

The production terms in the turbulent ki-
netic energy budget are displayed in Fig. 6.
Note that the values of the outer walls are
larger than those of the inner walls for both
cases. This reconfirms the results of the r.m.s.
profiles of fluctuating velocities in Fig. 4.

Figure 7 shows the pressure strain terms in
the budget of w)u}. It is seen that the pro-
files of the outer wall are larger than those of
the inner wall for both cases. This indicates a
lower energy redistribution of the inner wall.

The skewness factors of the wall-normal ve-
locity fluctuations are exhibited in Fig. 8. In
Fig. 8(a), the skewness factor of the inner wall
becomes zero at two points in contrast to that
of the outer wall which has only one crossover
point. These results for the inner and outer
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Figure 6: Production terms in the budget of the turbulent
kinetic energy in wall coordinates.
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Figure 7: Pressure strain terms in the budget of v/, u/, in wall
coordinates.

walls are consistent with the previous numeri-
cal data for channel and pipe flows correspond-
ing to the inner and outer walls, respectively
(Kim et al., 1987, Eggels et al., 1994). In Fig.
8(b), the profile of the skewness factor near
the outer wall is similar to that in the pipe
flow. Near the inner wall, however, the profile
is positive throughout the layer. This tendency
is discernible in the numerical simulation of
turbulent boundary layer on a cylinder in an
axial flow (Neves et al., 1994). An examina-
tion of the results in Fig. 7 indicates that the
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Figure 8: Skewness profiles of the wall-normal velocity fluc-
tuations.

concentric annular pipe flow has the general
characteristics of fully-developed flows such as
channel and pipe flows.

To explain the altered intermittent behav-
ior of the inner and outer walls, the flatness
factors of the wall-normal velocity fluctuations
are shown in Fig. 9. Near the wall (y* < 20),
the values of the flatness factor near the inner
and outer walls rapidly increase for both cases.
This reflects the high intermittency of the wall-
normal velocity fluctuations close to the wall.
As reported in the numerical simulation of Xu
et al. (1996), such high values are attributed to
strong sweep events. As a result of the flatness
factors of the wall-normal velocity fluctuations,
the sweep events near the outer walls may be
stronger than those near the inner walls.

The contribution to the Reynolds shear
stress from each quadrant is shown in Fig. 10.
The thin and thick lines denote the profiles
of the inner wall and outer wall, respectively.
The crossover points between the dominance
of sweep and ejection events are located at
yT = 13 for both cases. This is very similar
to the numerical results for the channel and
turbulent boundary layer on a cylinder in an
axial flow (Kim et al., 1987, Neves et al., 1994).
It is notable that sweep events near the outer
walls are more predominant than those near
the inner walls. On the other hand, ejections
near the inner walls contribute to the Reynolds
shear stress more predominantly than those
near the outer walls. This can be interpreted to
be the same result as that of the flatness factors
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Figure 9: Flatness profiles of the wall-normal velocity fluc-
tuations.

of wall-normal velocity fluctuations. However,
since the quadrant analysis provides not only
the strength of sweep events but also the num-
ber of occurrences of sweep events, more de-
tailed investigations are required to assess the
effects of the strength of sweep events solely.

To explain the difference in the strength of
sweep events between inner and outer walls
more clearly, scatter plots of the instantaneous
v’ and v for @ = 0.1 are illustrated in Figs. 11
and 12. Six y-locations are selected to show the
altered dominance of sweep and ejection events
around the crossover point, which is confirmed
in Fig. 10. It should be noted that sweep
events near the outer wall are much stronger
than those near the inner wall. This guaran-
tees that the strength of the sweep motions
near the outer wall is higher than that near
the inner wall.

To obtain a better understanding of the
transverse curvature effect on the vorticity, a
statistical investigation on the orientation of
the vorticity field is made. Here, we follow the
approach of Moin and Kim (1985). The incli-
nation of the projection of the vorticity vector
in a r — z plane is given by

© = tan™! <“-’-> . 3)
Wz
The probability density functions (p.d.f.s) of
0O, weighted by the magnitude of the projected
vorticity vector (w2 +w,?)/ < wp?+w,? >, are
shown in Figs. 13 and 14. Here, <> indicates
the mean of the quantity inside the brackets
taken on the corresponding z — 6 plane. As
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Figure 10: Reynolds shear stress for each quadrant normal-
ized by the mean Reynolds shear stress.
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Figure 11: Instantaneous distributions of (u’,v’) near the
inner wall for = 0.1.

one moves away from the wall, the peaks of the
distributions are located around +90°. This
tendency persists up to y* ~ 37 in Fig. 13
and up to y* ~ 10 in Fig. 14. Farther from
the wall, the peak shifts to —135° and 45° as
was observed by Moin and Kim (1985). Note
that there exists a thicker layer near the outer
wall, in which the vorticity has a —135° and
45° orientation. This suggests that the vortical
structures which can extract turbulent energy
from the mean flow effectively are observed
more frequently near the outer wall (Neves et
al., 1994).



Figure 12: Instantaneous distributions of (u/,v’) near the
outer wall for a = 0.1.
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Figure 13: Weighted probability density functions of the
inclination angles of the projected vorticity vectors near the
inner wall for a = 0.1.

CONCLUSION

A detailed numerical analysis has been per-
formed to delineate the transverse curvature
effects on near-wall turbulent structures in a
turbulent concentric annular pipe flow. The
statistical descriptions of the turbulent quan-
tities were obtained by performing a direct nu-
merical simulation of turbulent concentric an-
nular pipe flow at Rep, = 8900 for two radius
ratios (@ = 0.1 and 0.5). The present numer-
ical results show that the turbulent structures
near the outer wall are more activated than
those near the inner wall.
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