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ABSTRACT

Equilibrium similarity considerations are
applied to the axisymmetric turbulent wake.
Two solutions are found; one for infinite
Reynolds number, one for small Reynolds num-
ber, and both dependent on the upstream
conditions. Neither agrees particularly well
with the data. For both solutions, the local
Reynolds number of the flow diminishes with
increasing downstream distance. As a conse-
quence, even when the initial Reynolds number
is large, the flow evolves from one state to the
other. Intermediate asymptotics is used to pro-
vide a bridge between the two solutions, which
is in excellent agreement with the experimental
data.

INTRODUCTION

The axisymmetric wake is of fundamental
importance since it is one of few flows where
the local Reynolds number decreases as the
flow evolves. Also, the equations of motion
governing the axisymmetric wake contain all
of the important dynamical terms for turbulent
flow away from surfaces. Hence the data from
this flow form an important data base for de-
veloping turbulence models of all types, as well
as for validating DNS and LES simulations.

The following observations can be made
from various experiments:

e Different initial conditions affect the
growth rates, contrary to the classical the-
ory which states that all wakes should de-
pend only on the downstream distance,
z, and the drag, nU26% This is most
strikingly illustrated by the photographs of
Cannon et al. (1993). Data from Cannon
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(1991) (for several different wake gener-
ators that all have the same drag) and
Menut et al. (2000) are plotted in Fig-
ure 1. These show the variation with z
of the transverse length scale defined by

/T(UOO —Uyrdr (1)
0

where U, is the centerline velocity deficit.
The data do not collapse to a single curve,
nor do these source dependent effects van-
ish, even for large Reynolds numbers or
large downstream distance. The curves de-
noted "model” will be explained in a later
section.
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Figure 1: Cross-stream length scale, §«/6 versus z/6, Can-
non (1991) and Menut et al. (2000).
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e The wake does not in general grow as the
1/3-power of downstream distance, z, as
predicted by the classical similarity the-
ory (c. f., Tennekes and Lumley, 1972). As
noted previously by Cannon, curve fits to
the data agree equally well with both a
cube root and a square root variation, and
not particularly well with either.

e In apparent contradiction, the mean veloc-
ity profiles from all experiments collapse



on a single curve when scaled with center-
line velocity deficit and Jx, as illustrated in
Figure 2a.

Figure 2: a) Mean velocities, b) Turbulence intensities, Can-
non (1991)

e And to further confuse the issue, the tur-
bulence intensities do not appear to col-
lapse at all, even for fixed upstream con-
ditions. Figure 2b shows profiles of u2/U2
for various downstream distances for one
of the screen wakes (the most porous) in
Cannon (1991). In fact, it seems like the
there are two branches; one for the near
wake and one for the far wake.

These observations cannot be explained by
classical similarity analysis, which argues that
the asymptotic wake is independent of its ini-
tial conditions and depends only on the dis-
tance downstream and the drag. Nor can they
be explained by measurement errors. While
the low turbulence intensities of the axisym-
metric wake make measurements far down-
stream difficult, they also insure that the hot-
wire techniques utilized are highly accurate.
At very least the problems presented by wake
measurements are no more difficult than for
grid turbulence, for which hot-wire measure-
ments have long been accepted.

The classical self-preservation approach to
free shear flows was questioned by George
(1989) and (1995), who argued that it was
based on assumptions that were not in gen-
eral valid. He proposed a new methodol-
ogy called equilibrium similarity analysis, and
demonstrated with it that solutions were possi-
ble which depended uniquely on the upstream
conditions. The new theory was in striking
agreement with the nearly concurrent exper-
iments of Wygnanski et al. (1986) for two-
dimensional wakes. These showed dramatic
differences between spreading rates and eddy
structure which depended on the wake genera-
tor.

George (1989) also argued that the axisym-
metric wake would behave similarly. He pre-
dicted that the mean velocity profiles from the
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different experiments would be the same, if
scaled by the centerline deficit velocity and ve-
locity deficit half-width, even if the wakes grew
at different rates. This is consistent with the
observations shown in Figure 2a. This result
is very important, since previous researchers
have often used such collapse to argue that
wakes are independent of upstream conditions.
The whole point of George’s analysis, however,
is that the source-dependent differences only
show up in the spreading rate, and the higher
turbulence moments.

In this paper, the analysis of George (1989)
is re-visited, corrected, and extended. It will be
shown that two different equilibrium similarity
solutions for the axisymmetric wake are possi-
ble: one for very high local Reynolds numbers,
and another for very low. Most importantly,
because the local Reynolds number decreases
with distance downstream, the flow will evolve
from one state to the other, no matter how high
the initial Reynolds number of the flow. The
available experimental data is analyzed, espe-
cially addressing the particular points listed
above. Not surprisingly (given the state of con-
fusion regarding it), most of the experiments
are shown to take place in the evolution region
where neither limit applies exactly. An inter-
mediate asymptotics solution for this region is
shown to be in excellent agreement with the
data.

GOVERNING EQUATIONS

The Reynolds averaged z-momentum equa-
tion for the axisymmetric far wake without
swirl reduces to second order to:

0 10,
[](x,a—‘r (U - Uoo) = —;5? (T'U'U)
0 (— — 10/( 0
— 2 _ 42 —___ — —
+{8x (U “)’L”rar(rar(U Uoo))}

(2)

Here, the r-momentum equation has been used
to integrate out the pressure. The terms in
curly brackets are usually neglected, but are
retained here.

The momentum equation can be integrated
over a cross-section to yield an integral con-
straint for the conservation of momentum:

o0
Uso / (Uso — U) 2nrdr = 10?U2%  (3)
0

where 6 is the momentum thickness.
As noted by George (1995), the momentum
equation alone is not sufficient to determine



the similarity constraints. Even the inclusion
of the kinetic energy equation is not enough
to close the system so that the xz-dependence
can be determined. Instead, the individual
Reynolds stress equations have to be inves-
tigated. These, together with the constraint
of continuity on the pressure-strain rate terms
provide the necessary conditions. The compo-
nent Reynolds stress equations for the far wake
are:

u2 balance
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where €, €y, €y, and &y, are the components
of the homogenous dissipation.

The Similarity Transformations
We seek solutions on the form (written here

for the momentum equation and u? equations
only — the others are treated similarly):
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U = Use = Uy(2)£ (1, %) (82)
@ = Ry(z)g(n, %) (8b)
%@ = Kou(2)ku(n, %) (8¢)
S = Tagtian(n,®)  (8d)
b —P@nmy ()
“pu= PPy ()
ew = Du(@)du(n,¥)  (3g)

where n = r/§(z) and * denotes a possible (un-
known) dependence on initial conditions.

The Momentum Integral
Substitution of eq. (8) into eq. (3) yields:

U,6? /O 2fndn = Uso0? (9)

It follows immediately that if § = 6, and U, =
U,:
Us
Uso

(10)

The Transformed Mean Momentum Equa-
tion

Substituting eq. (8) into the momentum
equation, eq. (2), and rearranging the terms
yields:

§ dU, ] .,
o] ] -

Us dzx
Rs !
(779)
UsoUs n

where / denotes derivation with respect to 7.
Note that the second order term could have
been retained. To this point the mean momen-
tum equations have simply been transformed
by the separation of variables in eq. (8) so
that all of the explicit z-dependence is in the
bracketed terms. Thus the results are com-
pletely general and no similarity assumptions
have been made (although the form of the so-
lutions has been restricted).

(nf")
n

U:é] (11)

The Transformed Reynolds Stress Equations
Substituting eq. (8) into the transport equa-
tions for Reynolds stresses yields:
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As before, the equations have simply been
transformed by the similarity transformations
so that all the explicit z-dependence is in the
bracketed terms.

EQUILIBRIUM SIMILARITY SOLUTIONS
TO THE TRANSFORMED EQUATIONS
For the particular type of ”equilibrium” sim-
ilarity solutions suggested in George (1995),
the terms in the governing equations must

maintain the same relative balance as the flow
evolves. These ”equilibrium” similarity solu-
tions exist only if the terms within square
brackets have the same z-dependence, and are
independent of the similarity variable, . Thus,
the bracketed terms must remain proportional
to each other as the flow evolves. This is
denoted by the symbol ~ which should be in-
terpreted as “has the same z-dependence as”?.

For the mean momentum equation, these
equilibrium similarity constraints can be writ-
ten as:

[5 dUs] {dé] R, N [ v }
U dz |~ |dz| "~ [UOOUSJ Usol

(16
Note that there is nothing in the equations or
the theory which suggests that the constants
of proportionality are independent of source
conditions, nor in fact do they appear to be.
This is contrary to the usual assumptions in
self-preservation analysis (c. f., Tennekes and
Lumley, 1972). It is trivial to show that the
relation between the first and second terms of
eq. (16) is satisfied by the momentum integral
result of eq. (10).

The proper scale for —uv is obtained by us-
ing the second and third terms, which yields:

dé
R ~ UsU, s (17)
It is immediately obvious how the equilibrium
similarity approach yields a different and more
general result than the classical approach,
where it is assumed without justification that
Rs = U? (c. f., Tennekes and Lumley, 1972).
The same equilibrium similarity hypothe-
sis can be applied to the component Reynolds
stress equations; namely that all of the brack-
eted terms should remain proportional (i.e.,
have the same z-dependence). For example,
inserting eq. (8) into eq. (4) yields after some
elementary calculus that equilibrium similarity
can be maintained only if:

0 dK, do T.0 D,o v
Ky dz  dz~ UwKy UKy = Usd
(18)
Similar relations arise from the other compo-
nent equations.

All of these relations cannot simultane-
ously be satisfied given the constraints already
placed on Uy, 4, and R from the mean momen-
tum equation. On the other hand a solution is

!Note that the symbol ~ has nothing to do with order of
magnitude in this paper.
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possible if the viscosity is identically zero, since
then all terms involving the viscosity fall out
of the problem. And also a solution for finite
viscosity is possible if it can be shown that the
production term in the Reynolds shear stress
equation, v20U/dy, is negligible relative to the
leading terms in the equation.

It will be demonstrated below that these are
in fact limiting solutions for very large tur-
bulence Reynolds number, and for very low
turbulence Reynolds number. Note that the
latter solution should not be confused with the
laminar solution, but instead identified with
turbulent flow for which the velocity spectra
do not have a developed k%% range. And
by contrast, the high Reynolds number limit
will be a flow which does have an easily appar-
ent inertial subrange in the spectra. Further it
will be demonstrated that no matter how high
the Reynolds number of the drag-producing de-
vice, say Ry = UyB/v, the diminishing local
Reynolds number will move the equations (and
the solutions as well) from one regime to the
other.

The Infinite Reynolds Number Solution and
its Limitations

A solution having the same z-variation as
the classical solution can be derived by setting
the viscous terms in eq. (11) to (15) exactly
equal to zero, which corresponds to the limit-
ing solutions at infinite Reynolds numbers. It
is straightforward to show (in the same manner
as George, 1995) that all of the remaining con-
straints can be satisfied. Of particular interest
are the following;:

ds  Dyd
— ~ 1
dr UxKy, (19)
Ky~ Ky~ Ky, ~U? (20)
Dy ~ Dy~ Dy ~U/S (21)

The scaling for the dissipation is just what one
should expect for an infinite Reynolds num-
ber solution where the dissipation is completely
controlled by the energetic turbulence (i. e.,
€ oc u3/l in the usual notation of texts).

It follows immediately after some manipula-
tion that:

913

%’: —a [m 0”’“’] (22)
U . 1-2/3
U; =b[f” 6%] (23)

where a = a(x), b = b(x), and z, = z,(*)
is a virtual origin. This is, of course, the
classical solution with but a single difference
— the dependence of the coefficients on up-
stream conditions, *x. This possible dependence
must be acknowledged, since there is nothing
in the equations themselves to suggest inde-
pendence of upstream conditions. The mean
velocity profile, on the other hand, can be
shown to be independent of upstream condi-
tions. This is achieved by incorporating a fac-
tor of [Rs/(UsoUs) dd/dx] into the definition of
g so that there are no parameters at all in eq.
(11).

Now it was noted in the introduction that
the cube root solutions simply do not account
for most of the data, and especially the care-
ful data of Cannon (1991). So where might
the problem be? It is easy to show that, un-
like most other free shear flows, this infinite
Reynolds number solution contains the seeds of
its own destruction. The local Reynolds num-
ber, R = Usd/v, controls the relative impor-
tance of the viscous terms in the mean moment
and Reynolds shear stress equations. Substitu-
tion of eq. (22) and (23) into the definition of
R yields:

R =

_ -1/3
Ulsjé* _ U;OG [m emo] (24)

Thus, no matter how large the initial Reynolds
number, Ry, eventually far enough down-
stream it is diminished until the viscous terms
can no longer be neglected. And if the viscous
terms are not negligible, the infinite Reynolds
number similarity solution cannot be even ap-
proximately true.

The Low Re Solution

As noted above, there is another equilbrium
similarity solution to the same set of equations.
The difference is that this time the terms in-
volving viscosity are kept. This produces one
additional constraint:

@ v (25)

dr  Usd
It is extremely important to note that even
though some of the relations are the same (e.g.,
K,/U? = constant), the constants of propor-
tionality (or more properly, the parameters of
proportionality since they all depend on *) are
most likely different from those governing the
infinite Reynolds number solution.



There is one problem which at first glance
appears to be quite serious. All of the con-
straints in the Reynolds shear stress equation
cannot be met, in particular the one arising
from the production term, v20U/dy. These
offending terms in fact die off with distance
downstream faster than the remaining terms
in the equation. Therefore, they can also be
neglected in the analysis.

It is straightforward to show that eq. (25)
can be integrated to obtain:

O 1/2 | T — Loo 12
7= c Ry —7 (26)
Us T — Too -1
=d 2
i 0
where as before ¢ = c¢(x), d = d(x), and

Too = Too(*) is a virtual origin which may be
different than the one obtained above. And as
for the infinite Reynolds number solutions, the
mean velocity profile can be shown to be inde-
pendent of upstream conditions. It is easy to
show that the local Reynolds number continues
to fall with increasing distance downstream;
hence the approximations improve with dis-
tance downstream.

A solution for moderate Reynolds numbers

Unfortunately, as is clear from the data pre-
sented earlier, most of the experimental data
is between the two limiting solutions. Hence
neither alone describes the data well. Inter-
mediate asympotics, however, offers the pos-
sibility of bridging the gap. The easiest way
to understand what is required is to note the
appearance of the similarity scaling functions
for the dissipation; namely D,, D, and D,,.
As noted above, for the high Reynolds num-
ber solutions, D, ~ U2/6 ~ UsK,/d, while
for the low Reynolds number solutions, D, ~
vU2/6% ~ vK, /6. This is exactly the kind of
behavior that has long been accounted for by
turbulence modelers.

The simplest intermediate asymptotics solu-
tion which accounts for both the high and low
Reynolds number dissipation limits is simply
their sum. Assume then that:
UsK, +5 vK,

0 62

Then applying the similarity constraints yields:

ds UK, vK.,) 6
dz {O‘ A e

D,=a«a

(28)

(29)

After some manipulation this reduces to:

ds 0\ 2 0\ !

da:_a(5> +ﬂ(6) (30)
This can be integrated directly to obtain §/6
as a function of z/6.

Figure 1 shows the Cannon (1991) and
Menut et al. (2000) data and the integral of
eq. (30) where the coeffients have been deter-
mined by optimization techniques. The theory
describes the data remarkably well, and also

makes understandable Cannon’s difficulties in
making sense of it.

CONCLUSIONS

The conclusions that can be drawn are that
the initial conditions dominate the axisymmet-
ric wake. The effect of initial conditions shows
up in growth rate and higher moments, see
George (1989). Local Reynolds number effects
are also very important since it goes down as
the flow evolves. This accounts for deviations
from simple power law behaviour of the growth
rate. Simple power laws are only reached in the
limits Re — oo and Re — 0.
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