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ABSTRACT

A computational method has been proposed
to predict liquid-solid turbulent flows on mov-
ing bottom boundaries. The two-phase flows
are numerically predicted with a two-equation
turbulence model which is derived from a
liquid-solid two-fluid model. This numerical
model includes an algebraic equation for the
turbulence energy in a dispersed phase as well
as the transport equations for turbulence en-
ergy and its dissipation rate in a liquid phase.

The profiles of the bottom boundaries are
represented with curvilinear coordinates. The
coordinates are regenerated at the appointed
time steps to respond to the unsteady defor-
mation of the boundaries, while the internal
grid points are rearranged on the basis of the
arbitrary Lagrangian-Eulerian (ALE) formula-
tion. Accordingly, the interaction between the
two-phase flows and the deformation of bound-
ary shapes is reasonably taken into account in
the present method.

This computational method was applied to
the deformation of the sand bed profiles caused
by horizontal turbulent jet flows. As a result, it
was shown that the predicted bed profile on the
center line, including the deeply scoured area,
is in good agreement with the measurements.

INTRODUCTION

The accurate estimation for the sand bed
profiles deformed by turbulent flows is impor-
tant in various civil engineering problems, since
it is closely related to the long-term stability
of the hydraulic structures. Typical examples
can be found in the local scour on river beds
around bridge piers and sand bed deformation
in front of power stations when cooling-water
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is discharged with high velocity from their
submerged outlets. In these problems, three-
dimensional flow field, including some amount
of sands, should be treated as liquid-solid two-
phase flows and the bottom boundaries con-
sisting of sand particles can be recognized as
moving boundaries due to their unsteady and
nonuniform deformation.

In this paper, a computational method has
been proposed to predict liquid-solid turbu-
lent flows on moving boundaries. The flow
field is numerically simulated with a turbu-
lence model, which has been derived from the
governing equations for a liquid-solid two-fluid
model. The present numerical model con-
sists of continuity and momentum equations
for both liquid and solid phases together with
the transport equations for turbulence energy
and its dissipation rate in a liquid phase. In
addition, an algebraic equation is utilized to
accurately predict turbulence energy in a dis-
persed phase.

The deformation of the boundary profiles
is estimated with the predicted concentra-
tion flux of solid particles. The complicated-
shaped boundary profiles are represented
with the three-dimensional curvilinear coordi-
nates (Thompson et al. 1985), which are re-
generated at suitable intervals to respond to
the unsteady deformation. The grid treatment
is based on the arbitrary Lagrangian-Eulerian
(ALE) formulation (Hirt et al. 1974), which
is one of the most effective methods to deal
with moving boundaries. The computations
of the liquid-solid flows and the deformation
of boundary profiles are performed alternately
with different computational time increments
in order to take account of the mutual in-



teraction as well as the computational effi-
ciency (Ushijima 1996).

This computational method has been ap-
plied to local scouring of a sand bed caused by
the cooling-water discharge from a power sta-
tion. Through the comparison with the field
measurements, the validity of the prediction
method is discussed.

NUMERICAL MODELING

Two-Fluid Turbulence Model

The governing equations are based on a
liquid-solid two-fluid model, in which the con-
tinuity and momentum equations are derived
for both liquid and solid phases (Murray 1965).
A two-equation turbulence model can be ob-
tained from the two-fluid model assuming that
the instantaneous values in liquid-solid flows
are separated into time- or ensemble-average
and fluctuating quantities as done in the
derivation of usual turbulence models. Thus,
the velocity components in the liquid and solid
phases, bearing subscripts f and p respectively
in this paper, are written as ug; = Up + 'y
and up; = Up; + u/p;, where capital and ’single-
prime’ letters stand for the average and fluctu-
ating components respectively. Similarly, pres-
sure p in the liquid phase and the volumetric
concentration of the solid phase c are given by
p= P+ p' and ¢ = C + ¢ respectively.

Since the volumetric concentration c is suf-
ficiently small in this paper, the following re-
lationship is established for the liquid phase
fraction in a unit volume, ¢ (=1 — c), as done
by Hosoda (Hosoda and Yogoshi 1987):
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In addition, the second term on the right hand
side of Eq.(1) is generally much smaller than
the first term. Thus, the Eq.(1) is only applied
~ to the external force and liquid-solid interac-
tive force in which the evaluation of volumetric
concentration is relatively important. In con-
trast, the following relationship is utilized for
the rest of the terms in all governing equations:
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With the above relationships for instanta-
neous values the following continuity equations
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can be derived for the liquid and solid phases:
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where the densities py and p, in both phases
are taken as constant.

In addition, the momentum equations are
obtained for the averaged components as
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where Fj is external force, vy and v, are kine-
matic viscosities and d is the representative
diameter of a solid particle. In the momentum
equations, the liquid-solid interactive force is
given by the Stokes law. The Lagrangian dif-
ferential operators in Egs.(5) and (6) are given
by
0

el

where subscript X means the phase (X takes f
or p) and Up; corresponds to the grid velocity
which arises in the grid regeneration based on
the ALE method.

The transport equation for the turbulence
energy kj in a liquid phase can be derived from
the equation of u; as
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The turbulence energy, its dissipation rate and
the production term are defined by

1
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where X takes f or p according to the consid-
ering phase. The equation of €; is derived as
the same equation as that of the single phase
flows when assuming the isotropy of the fine-
scale fluctuations (Launder 1975).

In contrast to the usual models, considera-
tion is given to the treatment of the turbulence
energy in a solid phase k,. Its transport equa-
tion is derived as follows:
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The production term Py, is given by Eq.(11).
With the modeling of the second term on the
right hand side of Eq.(12), the closed form is
given by
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Furthermore, from Eq.(13), the following alge-
braic form is derived:
1—
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Consequently, together with the governing
equations for liquid-phase turbulence energy
and its dissipation rate, the algebraic equation
given by Eq.(14) is solved in the present nu-
merical model.

The Reynolds stress terms included in the
governing equations are modeled by the follow-
ing forms:

—— OUx; OUx;
—UxUx; = Vix ( (%j’ + B:vij )

[X=forp, i#j5] (15)
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The eddy diffusivities vyx is given by rx =
Cu(k% /ex) where X takes f or p. The turbu-
lent flux du'y, is modeled by a gradient-type
representation with the turbulent Schmidt
number o.x.

S X ocC
duly, = oo O; (16)

In addition, with the relationships for @
and u), (Hosoda and Yogoshi 1987), the tur-

bulence interaction between two phases u}iul’m-
is assumed to be given by

an L
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where a = 18ps/p, and Ty, is the Lagrangian
time scale for a liquid phase (Calabrese and
Middleman 1979), which is given by
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Finally, taking account of the modeling for
the scalar dissipation (Launder 1975), e, is as-
sumed to be modeled as

€
& = ccpk—;k,, (19)

Computational Procedures

The governing equations are discretized in
a Lagrangian scheme (Ushijima 1994). The
momentum equation for a liquid phase, for ex-
ample, is written as the following form:

R = U+ | - PGI! + HY
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where PG;, H; and D; are pressure gradient,
external and interactive forces and diffusion
terms respectively. In Eq.(20), superscripts
stand for the computational step numbers and
'prime’ and ’double prime’ stand for the vari-
ables located on upstream positions at n and
n — 1 time steps respectively.

The first term on the right hand side of
Eq.(20), corresponding to a convection term,
is evaluated by a local cubic spline interpo-
lation (LCSI) method with third-order accu-
racy (Ushijima 1994). In a one-dimensional
space, as shown in Fig.1, the convected vari-
able ¢ at &,, is spatially interpolated between



&mi_, and &, with the following cubic spline
function:
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where second-order derivatives M;_; and M;
are obtained from the third-order polynomial
uniquely determined from the neighboring four
values (¢i—2, ... , pi+1). In a three-dimensional
space, the one-dimensional interpolation is re-
peated in all directions and convected value
is evaluated from the surrounding 64 values.
This method allows us to have more accurate
results than the third-order upwind difference
as shown by Ushijima (1994).
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Figure 1: LCSI method in one-dimensional space

Deformation of Bottom Boundary

The bottom boundary profiles are deformed
due to the accumulation and resuspension of
the particles according to the traction force
caused by turbulent flows. The amount of the
sand particles ps lifted up by the turbulent
flows is estimated with the following pick-up
rate model proposed by Nakagawa and Tsuji-
moto (1980):

Ds

d
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where T, is the normalized traction force given
by
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The friction velocity u, is calculated with hor-
izontal two velocity components, u, = (u?, +
ug*)l/ 2 with general logarithmic law for a hy-
draulically rough wall.

From the calculated ps, the boundary con-
dition for the average volumetric concentration
C is given to the computational cell on the bot-
tom surface. The spatial distributions of C
is obtained from the computation of the solid
phase governing equations. The amount of the
solid particles transported in horizontal direc-
tions x; (i = 1, 2) is estimated from the vertical
integration of the flux CUp;. Thus, the level of
the bottom surface B can be obtained from
the following continuity equation for the bot-
tom materials:

0B qu
A= 5+ Bz,

where 7 is the porosity and g; is the solid phase
quantity transported in z; direction.

The profiles of bottom boundaries are repre-
sented with the three dimensional body-fitted
coordinates generated by
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ij
where P, is a control function, &, is the coor-
dinates in the transformed space. The asterisk
in Eq.(25) means that the derivatives are eval-
uated with spline functions to increase numer-
ical accuracy (Ushijima 1994).

In accordance with the progress of the
boundary deformation, the curvilinear coordi-
nates are regenerated, so that the unsteady
deformation of the boundary shapes can be ad-
equately treated. The internal grid points are
distributed independently of the fluid velocity,
on the basis of the ALE formulation. The ef-
fects of the resulting grid velocity are taken
into account in the Lagrangian differential op-
erators as indicated in Eq.(7).

The computations for the liquid-solid flows
and the deformation of boundary shapes are
based on the numerical procedures proposed by
Ushijima (1996). Thus, the two processes are
calculated alternately with different computa-
tional time increments. This method allows
us to deal efficiently with two processes having
largely different time scales.

=0 [i=1,2] (24)
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APPLICATION TO LIQUID-SOLID FLOWS
ON DEFORMED SAND BED

The computational method was applied to
the local scouring on a sand bed caused by
cooling-water discharge from a power station.
Figure 2 shows the geometry and bottom
boundary conditions. The bottom surface in
front of the outlet structure is covered with
concrete blocks and SPAC (Spreading Armor
Coat) to prevent the scour. The surrounding
area consists of uniform sand particles with the
diameter of 0.2mm. The cooling-water is dis-
charged only from the middle outlet with the
average velocity of 5.0m/s.

y=50m €[ --------ssmmmeeceec o et f
.
y=36m ¢ H
y=26m < :
concrete SPAC sand bed H
—-—-5 blocks H
outlet . '
D=2.67m qy 5m plane view |
> J
X v v v

x=40m x=71m x=200m
. K Sl $
= '
5.2m H
outlet _._. '
8.8m '
D=2.67m . . '
. 2.3m ver '
Ly v ertical vzew:

ka.t--
8m 12m 20 SPAC I sand bed

concrete blocks

Figure 2: Geometry and boundary conditions
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Figure 3: Generated computational grid

287

Figures 3 and 4 show the generated curvilin-
ear coordinates and predicted velocity vectors
near the symmetrical section when the profiles
of bottom boundaries are in the steady state.
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Figure 4: Predicted velocity vectors in liquid phase

Figure 5 shows the distributions of k; and
kp/ks near the outlet. The ratio k,/ks ranges
from 0.83 to 0.98 in the area of x = 0 to 20m,
which indicates that the large turbulence en-
ergy of the flow field is transferred to that of
the solid phase in this region.
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Figure 5: Distribution of turbulence energy



Figure 6 shows the predicted velocity vec-
tors in the solid phase. The velocity compo-
nents in -z direction can be found in this phase
due to the density effects.
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Figure 6: Predicted velocity vectors in solid phase

Finally, Fig. 7 shows the comparison be-
tween the field observations and computational
results on the sand bed profiles along the center
line. This section includes the deeply scoured
area. As shown in Fig. 7, the predicted results
are in good agreement with the field measure-
ments.
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Figure 7: Comparison of sand bed profiles

CONCLUDING REMARKS

A computational method has been devel-
oped to predict liquid-solid turbulent flows on
moving boundaries with a two-fluid turbulence
model. The profiles of the sand bed are repre-
sented by regenerating curvilinear coordinates
on the basis of the ALE formulation. This
computational method was applied to the de-
formation of the sand bed profiles caused by
cooling-water flows. As a result, it was shown
that the predicted bed profiles are generally in
good agreement with the results obtained by
field measurements.
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