TOPOLOGY AND TRANSPORT CHARACTERISTICS IN A
TURBULENT TWO-CYLINDER WAKE

M.W. Yiu, Y. Zhou and H. J. Zhang
Department of Mechanical Engineering
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
Email: mmyzhou@polyu.edu.hk

ABSTRACT

This work aims to study experimentally the turbulent
flow topology (vortex patterns), heat and momentum
transport in the wake of two side-by-side circular
cylinders. Spacing T between the cylinder axes was
varied from 1.5d to 3d (d is the cylinder diameter). At
T/d = 1.5, the phase-averaged velocity and temperature
fields display a single vortex street. The two rows of
vortices exhibit a great difference in the maximum
vorticity and size and are asymmetrical in the lateral
location with respect to the flow centreline. As 7/d
increases to 3.0, the flow is totally different. Two in-
phase streets occur initially. They are less stable, with
vortices weakening faster, than the street at 7/d = 1.5.
By x/d = 40, one street only is identifiable. The
momentum and heat transport characteristics of the flow
are discussed by examining the coherent and incoherent
momentum and heat flux vectors.

INTRODUCTION

Flow around two side-by-side cylinders has received
considerable attention in the past (Zdravkovich 1977,
Sumner et al. 1999) because of its inherent importance
and practical significance in many branches of
engineering. The flow behind two side-by-side
cylinders depends to a great extent on the ratio 7/d.
When 7/d < 1.2, the two cylinders behave like a single
structure (Sumner et al. 1999; Zhou et al. 2000),
generating a single vortex street. For 1.2 < T/d < 2.0,
the gap flow between the cylinders is deflected. The
deflected gap flow is bi-stable and randomly changed
over from one side to another (Ishigai et al. 1972;
Bearman & Wadcock 1973; Kim & Durbin 1988). As
7/d is increased beyond 2, two distinct vortex streets
have been observed (Landweber 1942). The two streets
are coupled, with a definite phase relationship.
Williamson (1985) showed at Reynolds number Re (=
U,d/v,where U_ is the free stream velocity and v is

the kinematic viscosity) = 100 — 200 that the two streets
may occur in phase or in antiphase. The in-phase streets
eventually merged downstream to form a single street,
while the in-antiphase streets remained distinct farther
downstream.

Most of information obtained on the two-cylinder
wake is based on flow visualisation data at a low
Reynolds number, thus providing a qualitative
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description only of the flow. Based on ensemble-
averaged LDA measurements, Kolaf et al. (1997)
studied the turbulent near-wake of two side-by-side
square cylinders for 7/d = 3.0 and Re = 23100. They
found that the circulation of inner vortices, i.e. those
shed on the side towards the flow centreline, decreased
faster than that of outer vortices, which were shed on
the free stream side. Their study however did not cover
the single vortex street regime (7/d < 2.0). Sumner et al.
(1999) studied the wake of two and three side-by-side
circular cylinders in a range of 7/d = 1 ~ 6 for Re = 500
~ 3000. Their flow visualisation unveil some interesting
details of vortex shedding and gap flow between
cylinders for a relatively high Re. Using a combination
of an X-wire and a cold wire, Zhou et al. (2000)
measured the velocity and temperature fluctuations at
Re = 1800. They observed that the cross-stream
distributions of the Reynolds stresses and heat flux vary
significantly as 7/d reduced from 3.0 to 1.5, implying a
different flow topology (the pattern of vortical
structures). Although it is by now well known that the
number of vortex streets are different for the two flow
regimes, many details of the flow topology, especially
the temperature field, remain unknown. Therefore, the
first objective of the present work is to study the effect
of 7/d on the topology of the velocity and temperature
fields. One may surmise that the momentum and heat
transport characteristics of the flow may not be the
same as those in a single cylinder wake. The second
objective is to understand the manner in which the
momentum and heat transport is carried out as 7/d
varies and compares it with a single cylinder wake.

EXPERIMENTAL DETAILS

Experiments were carried out in a closed circuit wind
tunnel with a square cross-section (0.6 m x 0.6 m) of 2.0
m long. The wake was generated by two brass cylinders
(d = 12.7mm) arranged side-by-side (Fig. 1). The
cylinders were installed horizontally in the mid-plane
and spanned the full width of the working section. They
were located at 20 cm downstream of the exit plane of
the contraction. This resulted in a maximum blockage
of about 4.2% and an aspect ratio of 47. The transverse
spacing between the cylinders was varied from 7/d = 1.5
to 3.0. Both cylinders were electrically heated. The
maximum temperature difference between the cylinders
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Figure 1 Experimental arrangement.

and the ambient fluid, @,, was approximately 1.0°C. At

this level of heating, the temperature can be safely
treated as a passive scalar at the three measurement
stations, x/d = 10, 20 and 40. Measurements were made
at a free-stream velocity U, of 7m/s, or Re = 5800.

A three-wire probe (an X-wire plus a cold wire) was
used to measure the velocity fluctuations in the
streamwise and lateral directions, « and v, respectively,
and the temperature fluctuation, #. The three-wire
probe was traversed across the flow. One X-wire was
used in conjunction with the three-wire probe in order to
provide a phase reference for the signals from the three-
wire probe. The X-wire was fixed at 4d below the centre
of the lower cylinder. The hot wires were etched from a
5um diameter Wollaston (Pt-10% Rh) wire to a length
of about 1 mm. As for the cold wire, a 1.27um diameter
Wollaston (Pt-10% Rh) wire was etched to a length of
about 1.2] mm and a temperature coefficient of 1.69 x

10-3 °c (Browne & Antonia, 1986) was used.
Constant-temperature and constant-current circuits were
used for the operation of the hot wires and the cold wire,
respectively. An overheat ratio of 1.8 was applied for
the X-wire, while a current of 0.1 mA was used in the
cold wire. Signals from the circuits were offset,
amplified and then digitised using a 16 channel (12bit)
A/D board and a personal computer at a sampling
frequency f, = 3.5kHz per channel. The duration

sampling
of each record was about 10s.

PHASED-AVERAGED VELOCITY AND
TEMPERATURE FIELDS

Vortices shed from a bluff body are characterised with a
marked periodicity. In the near or intermediate wake, a
small dispersion is expected in the spanwise spacing,
lateral location, strength and shape of the vortices. The
marked periodicity persists even in the presence of a
neighbouring cylinder. The experimental data is
therefore phase-averaged. The phase averaging method
is similar to that used by Matsumura & Antonia (1993).
Interested readers may refer to their paper for more
details of this technique. The phase average of an

. . . . N
instantaneous quantity B is given by E*:_l‘z B>
N i=1 !

where k represents phase. For convenience, the
subscript £ will be omitted hereinafter. N is about 600
for 77d =1.5 and 1200 for 7/d = o & 3.0 (The single
cylinder case is also conveniently referred to as 7/d = o
in this paper). The variable B can be viewed as the sum
of the time mean component B and the fluctuation
component f. The latter can be further decomposed into
the coherent fluctuation f= (B) and a remainder

(incoherent fluctuation) g,

<By>=Br+<py, >

Figures 2 & 3 present the iso-contours of phase-
averaged vorticity and corresponding sectional
streamlines. In this paper, an asterisk denotes
normalisation by either ¢ _, ®, and d. This
normalisation is used for convenience because the
velocity and temperature fields of the present flow are
not self-preserving. The phase ¢, ranging from - 27 to +
2m, can be interpreted in terms of a longitudinal
distance; ¢ = 2m corresponds to the average vortex
wavelength. To avoid any distortion of the physical
space the same scales are used in the ¢ and y'-
directions in Figs. 2 & 3 and other figures that follow.

Vorticity is  calculated by oy +v) WU +in)
ox oy

viz.,

p=p+p. Also,

D=

X A—V————A(U-’—E) 4 where Ax = _UcAt = _Uc /fsumpling ’ U( is

Ax Ay
the average convection velocity of vortices, given by
the velocity U +# at the vortex centre. The vortex
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Figure 2 Phase-averaged vorticity contours @ (a-c)
T/d = . x/d = 10, contour interval = 0.27; 20, 0.135;
40, 0.03. (d-f) 7/d = 1.5: 10, 0.135; 20, 0.081; 40,
0.045. (g-1) 7/d = 3.0: 10, 0.135; 20, 0.054; 40, 0.0243.
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Figure 3 Phase-averaged sectional streamlines: (a) 7/d =
o, x/d = 10; (b) =, 20; (¢) =, 40; (d) 1.5, 10; (e) 1.5, 20;
(f) 1.5, 40; (g) 3.0, 10; (h) 3.0, 20; (i) 3.0, 40. The U:
values in Table 1 are used in construction of sectional
streamlines.

centre is identified with the location of the maximum
phase-averaged vorticity @_, , marked by ‘+’ in Fig. 2.
The estimate of U, is given in Table 1. Upper and
Lower in the table stand for the vortices above and
below the flow centreline y = 0, respectively. It will be
seen that at 7/d = 3.0 two vortex streets occur. QOuter in
the table denotes the outer vortices, which are shed
from the side of a cylinder nearer to the free stream;
Inner represents the inner vortices shed from the side of

Table 1 Some characteristic properties of vortices

a cylinder close to the flow centreline. The result at 7/d
= oo is in good agreement with Zhou & Antonia
(1992)’s measurement, lending credence to the present
estimate. For 7/d = 3.0, the U, values are practically the
same for the upper and lower row vortices but the outer
vortex appears to have a larger U, than the inner. The
difference is probably because the outer row vortices
are farther away from the flow centreline. The vortex
path, i.e. the most likely lateral distance ,’= y./d (Table

1) of the vortex from the flow centreline is about 1.9 for
the outer vortices and 1.3 for the inner vortices. For the
same token, there is a difference in U, between the
upper and lower row vortices for 7/d = 1.5; the
difference is quite significant at x/d = 10. It should be

mentioned that @&  impairs x/d  increases.
Consequently, the wuncertainty arises in the
determination of the vortex centre, thus adversely
affecting the estimate of U,. This is particularly evident
for the inner vortices and hence their y, and U, values
for x/d 2 20 are not given in Table 1. The U, value of
the outer vortex is also used to calculate the averaged
vortex wavelength, i.e. U.T; = U./f..

A single cylinder wake and the two-cylinder wake at
T/d = 1.5 display a single vortex street. The street at 7/d
= 1.5 is however distinctly different from that at 7/d =
. Firstly, the two rows of vortices have a large lateral
spacing. For example, this spacing for 7/d = 1.5 is 2.85,
2.28 and 3.8 for x/d = 10, 20 and 40, respectively. The
corresponding spacing is only 0.46, 1.60 and 2.58 for
T/d =co. Their wavelength is also greater than that at 7/d
= oo. Spectral analysis indicates a single vortex
frequency across the wake (this is also true for 7/d =
3.0). The corresponding Strouhal number St = f,d/U,, is
0.11, about one half of that (0.21) at 7/d = « or 3.0.

Two in-phase vortex streets are seen up to x/d = 20 for

as

T/d © 1.5 3.0
X/d 10 20 40 10 20 40 10 20 40
Outer |Upper |0.23  |0.80 1.29 1.18 1.18 1.89 1.91 217 | 244
Lower -1.67 |-1.10 |[-1.89 -1.90 | -2.01 | -2.3
e Inner |Upper 1.29
Lower -1.30
Outer |Upper | 0.86 | 0.87 | 092 | 0.77 | 0.80 | 0.87 | 0.83 | 0.84 | 0.88
Lower 0.85 | 0.81 0.89 | 0.83 | 0.84 | 0.87
U: Inner |Upper 0.80
Lower 0.80
Outer |Upper |-1.216 | -0.516 | -0.151 | -0.490 | -0.579 | -0.184 | -0.797 | -0.284 | -0.098
Lower | 1.267 | 0.461 | 0.128 | 1.025 | 0.292 | 0.263 | 0.835 | 0.33 | 0.103
5;“ Inner |Upper 0.707 | 0.173
Lower -0.727 | -0.126

261




T7d = 3.0. The inner vortices are weak in terms of lg);ax|

and small in size, as compared with outer vortices.
KolaF et al. (1997) studied the near-wake behind two
side-by-side square cylinders and noted a fast decay in
inner vortices in the base region.. They employed

effective turbulent vorticity flux density vector J =
{J",Jy},where

J*Zi <vl>-<ul> +i<u,~"r>’ (2a)
oy 2 x
2 _.2
J?’ =i SV > <u > _i<urvr ¢ (2b)
ox 2 oy

As discussed in detail by Hussain (1986) and KolaF et
al., the vector may provide a measure of the transport of
vorticity. Based on phase-averaged J, they inferred in
the base region that, while an outer vortex interacted
primarily with the upstream inner vortex, an inner
vortex interacted most vigorously with cross-stream
inner vortices, as well as with outer vortices. They
suggested that the interaction between the inner vortices
shed from the different cylinders was mainly
responsible for the fast decay in inner vortices.

The fast decay in inner vortices is also evident in the
present data. As a matter of fact, the two streets are less
stable than the single street at 7/d = o or 1.5. At x/d =
10, the ratio of |&,~;ax| of the inner vortex to that of the

outer vortex is about 0.83. It drops to 0.50 at x/d = 20.
By x/d = 40, vorticity contours (Fig. 2i) show a blank
zone in the central region; one street only is identifiable
(Fig. 31).

Using flow visualisation, Williamson (1985) observed
that, in a laminar flow, two in-phase laminar streets
formed behind two side-by-side cylinders (7/d = 4.0)
and further developed into one large-scale single street
downstream. He proposed that like-signed vortices in
the two streets paired up and formed binary vortices.
These binary vortices coalesced to form the single
street. Such a development was however not observed
in Sumner et al. (1999)’s PIV data (Re = 500 ~ 3000).

The @" contours (Fig. 2) and sectional streamlines (Fig.
3) also do not suggest the coalescence of binary vortices
to be a major mechanism behind the present observation
in the turbulent wake.

The inner vortices appear squashed, each surrounded
by four oppositely signed vortices. One may surmise
that the faster decay in vorticity level results from
interaction between the oppositely signed vortices. This
is indeed supported by effective turbulent vorticity flux

density vectors J (Fig. 4). The vector length in Fig. 4 is

proportional to the magnitude of J, thus representing
the strength of vorticity flux or exchange. The
outermost vorticity contour in Fig. 2, which corresponds
to the lowest level displaying a clear pattern of vortices,
is also plotted in Fig. 4 to indicate approximately the
boundary of individual vortices. The vortex centres and
saddle points, identified from sectional streamlines (Fig.
3), are marked by ‘+’ and ‘X’, respectively, in this
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figure and those following for the convenience of data
interpretation. For 7/d = oo, the vorticity flux appear
moving from one vortex, such as the one at ¢ =0,

towards the adjacent ones of opposite sign; the vectors
of generally intermediate length cross the vorticity
contour both upstream and downstream of the vortices,
indicating an exchange between counter-rotating
vortices. This is not so evident for 7/d = 1.5, suggesting
a relatively weak interaction between oppositely signed
vortices probably because of a large spacing both
longitudinally and laterally. The observation is in fact
reconcilable with the persistence of vortices for 7/d =
1.5. The present result at 7/d = 3.0 is however not quite
the same as that inferred by Koldf and his co-workers.
At this 77/d, relatively long vectors (Fig. 4c) cross the
contour of the inner vortex, e.g. at ¢ = 0. Part of them

move towards both upstream and downstream adjacent
outer vortices and part of them cross the flow centreline,
suggesting that the inner vortex exchanges vorticity
with both outer vortices shed from the same cylinder
and cross-stream inner vortices shed from the different
cylinder. However, judging from the vectors crossing
the flow centreline (most of which appear originated
from the inner vortices, though not exclusively), the
latter exchange appear comparatively weak, probably
due to a relatively large spacing between the inner
vortices shed from different cylinders (Fig. 4c). But
nonetheless weak, this exchange would cause additional

0
()
Figure 4 Effective vorticity flux density vectors J " at

x/d = 10. (a) T/d = =, (b) 1.5, (¢) 3.0. Centre and
saddles are denoted by “+” and “x”.

cancellation in vorticity associated with the inner
vortex. On the other hand, the outer vortices appear
interacting only with the inner vortices shed from the
same cylinder.

There is a close similarity between the @+4 (Fig. 5)
and @ contours at x/d = 10, suggesting an association
of heat with the large-scale vorticity concentration. The
similarity disappears at x/d = 20 for 7/d = 3.0 and at x/d
=40 for 7/d = . It is evident that higher the maximum
vorticity level of a vortex, better the coincidence
between the vortex and higher isotherms.

MOMENTUM AND HEAT TRANSPORT
Insight can be gained into the momentum and heat
transport characteristics of the flow by examining the
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temperature contours

(’3’k +6°. (a-c) T/d = : x/d = 10, contour interval = 0.2;
20, 0.1; 40, 0.1. (d-f) 7/d = 1.5: 10, 0.136; 20, 0.1; 40,
0.1. (g-i) 7/d = 3.0: 10, 0.1; 20, 0.1; 40, 0.1. The thicker
solid line denotes the outermost vorticity contours in
Figure 2.

coherent heat flux vector § = 74, v6) (Figs. 6d~f)
and the heat flux
(<u6’>,<v.0 >) (Figs. 6g~i), along with the
velocity vector V — ¥, =(U+17—Uc:‘7) (Figs. 6a~c).

incoherent vector g, =

The velocity vectors are viewed in a reference frame
translating at U..

At T/d = o, the coherent heat flux vectors within
vortices are generally aligned with the velocity vectors,
suggesting that the coherent motion does not contribute
to the net transport of heat out of vortices. On the other
hand, the incoherent heat flux vectors point upstream,
responsible mostly for the net heat transport out of
vortices.

The two-cylinder case is not quite the same. When
T7d is small, such as 1.5, one staggered (perhaps
predominantly) vortex street is formed. One row of
vortices is substantially weaker in the coherent motion
than the other. Their difference in term of the maximum
vorticity is a factor of about 2 at x/d = 10 (Table 1).
There is also a considerable difference in their sizes
(Fig. 2d). The coherent heat flux vectors associated
with the lower row vortex, which has a strong coherent
motion, exhibit a behaviour similar to their counterpart
at 7/d = o, but those associated with the upper row
vortex are directed towards the downstream vortex of
the opposite sign. The observation is reasonable. Under
the effect of the vortical motion, albeit weak, warm
fluid (6 > 0) downstream of the upper row vortex

centre goes down (v < 0). Meanwhile, the negative U
component associated with this vortex is suppressed,
the rotation of the coherent motion being thus
weakened, presumably due to the possible effect of the
deflected gap flow. The warm fluid is therefore
associated with the positive %, giving rise to the
positive 76 , whose contours are stretched towards the
cross-stream vortex downstream (not shown). The
incoherent heat flux vector g, at 7/d = 1.5 (Fig. 6h) is
generally directed upstream of the vortex centre,
indicating a transfer of heat out of vortices.

As the spacing between the cylinders increases, say at
T/d = 3.0, the flow topology is totally different; two
predominantly in-phase vortex streets occur. Vortices in
each street are spatially again in the staggered
arrangement. The outer vortices have a strong coherent
motion, relatively to the inner vortices. Since the two
streets are arranged anti-symmetrically about the flow
centreline, it is sufficient to examine one street only for
the study of the flow. We will focus on the one above
the centreline. The coherent heat flux appears
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Figure 6 Phase-averaged coherent velocity vectors V°
and heat flux vectors § and incoherent heat flux
vectors g at x/d = 10. (a-c) T/d = «; (d-f) 1.5; (g-i)
3.0.

circulating within the outer vortex, implying a small net
transport of heat out of the vortex. But g associated
with the inner vortices is seen crossing the vorticity
contour, pointing partly towards the free stream and
partly towards the downstream outer vortex shed from
the same cylinder.

At T/d = 3.0, § points upstream within the vortex, as
T/d = 1.5 or o0 . However, upstream of the inner vortex,

in particular outside the vorticity contour, g is
directed towards the free stream.
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CONCLUSIONS

The turbulent wake behind two side-by-side circular
cylinders has been investigated using a phase-averaging
technique. It has been found that the flow pattern, heat
and momentum transport depend on the cylinder-to-
cylinder centre spacing. The following conclusions can
be drawn.

At T/d = 1.5, a single vortex street is seen throughout
the range of x/d = 10 ~ 40. The vortex street is the most
stable among the three 7/d values. The vortices decay
relatively slow. The longitudinal and lateral spacing
between vortices is larger at T/d = 1.5. The large
spacing implies a weak interaction between vortical
motions, probably contributing to the relatively long life
span of the vortices and hence the stability of the vortex
street. The two rows of vortices behave quite
differently. Their convection velocities are not the same
at x/d = 10 probably because of an asymmetrical spatial
arrangement about the flow centreline. One row of
vortices is significantly weaker in strength than the
other. The deflected gap flow, discernible from the
phase-averaged sectional streamlines, may play an
important role in leading to the difference in strength. It
could act to suppress the rotational motion of vortices
towards which the gap flow is deflected, thus
weakening the affected vortices.

As T/d increases to 3.0, the phase-averaged velocity
field displays two in-phase vortex streets of the same
vortex frequency. The two streets interact vigorously
and are unstable, as compared with the cases of T/d =
oo and 1.5. The vortices decay fast, especially the inner
ones that are shed from the side of a cylinder close to
the flow centreline. By x/d = 40, the inner vortex
completely disappears and one street only is discernible.
An interpretation is proposed for the present observation
of a turbulent flow. While an outer vortex largely
interacts only with adjacent oppositely signed inner
vortices, an inner vortex interacts with the cross-stream
inner vortices as well as with adjacent outer vortices. As
a result, vorticity associated with the inner vortex is
annihilated quickly, leading to the early disappearance
of inner vortices and formation of a single street.

The spacing between cylinders does have a significant
effect on the heat and momentum transport
characteristics. It is found that the interaction between
the vortex streets at 7/d = 3.0 hastens, to a great extent,
the transport of heat out of vortices. The inner vortices
loose heat even faster than the outer vortices,
contributing negligibly to the lateral heat transport. As
T/d reduces to 1.5, The coherent heat flux vectors
associated with the vortex of greater strength exhibit a
behaviour similar to their counterpart at 7/d = o, the
coherent heat flux vectors within vortices are generally
aligned with the velocity vectors. But those associated
with the vortex of weaker strength are directed towards
the downstream vortex of the opposite sign.
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