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ABSTRACT

Analytical solutions of a second moment closure
for homogeneous turbulence subjected to periodic
compression-dilatation strains show that both the
characteristic turbulence frequency and turbulent
kinetic energy eventually decay, irrespective of the
initial state. The eddy-viscosity models on the
other hand give erroneous results because they
overlook the phase lag between periodic strain rate
and stresses in the exact production term in the sec-
ond moment closure. The author’s opinion that,
turbulence submitted to cyclic strains should al-
ways finally decay, remains a conjecture however,
since some (justified) simplifications were necessary
to produce the analytical solutions.

INTRODUCTION

For a sudden strong strain, the rapid distortion the-
ory (RDT) predicts an immediate response of the
turbulence stress field, with the components of the
stress tensor aligned with the imposed strain rate
tensor (see Hunt & Carruthers 1990, Cambon &
Scott 1999, for recent reviews of RDT which was
introduced by Batchelor & Proudman 1954). Tur-
bulence models, irrespective of the modeling level,
yield similar results. While these solutions reflect
reasonably well the reality for a short time after the
strain is imposed, later behaviour of the stress field
departs from the RDT. Spectral and spatial trans-
port, pressure scrambling and viscous dissipation
become all important in the dynamics of the stress
field, resulting in a response phase shift, which dif-
fers from one stress component to another. In the
case of a cyclic variation of the imposed strain, the
variation of the stress field will exhibit a hysteresis
which depends on the local flow conditions and will
vary over the flow (Hanjali¢ et al 1995).

The most relevant engineering application of a
cyclic strain field is in the cylinders of internal com-
bustion engines. Current industrial CFD (Compu-
tational Fluid Dynamics) codes for predicting ICE
flow use invariably the standard k—e eddy viscosity
(diffusivity) turbulence models (EVM) to close the
averaged momentum and energy equations. In this
paper we demonstrate that such a practice leads in-
evitably to erroneous results because of inadequate
modelling of the generation of turbulence by the
irrotational strain. While this is only one among
several sources of turbulence (shearing strain, swirl
and tumble, wall effects), its inadequate treat-
ment can not but result in faulty solutions. While
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the conventional differential second-moment clo-
sures (SMC) still suffer from several deficiencies
(the use of a single characteristic turbulence scale,
uncertainties in modelling the pressure-scrambling
effect), the exact treatment of the stress produc-
tion offers decisive advantages, particularly in flows
dominated by irrotational (normal) strains.

In this paper we confine our attention to the
analysis of the effect of the periodic compression
and expansion on the turbulence field by consid-
ering a shear-free homogeneous turbulence, away
from a solid wall. Although far from a real engine,
this idealized flow situation allows both the analyt-
ical and simple numerical solutions of the problem,
illustrating the importance of the exact treatment
of the turbulence stress generation mechanism.

HOMOGENEOUS IRROTATIONAL
CYCLIC STRAIN: CONJECTURE
We consider first the evolution of the turbulence ki-
netic energy and the characteristic time scale in a
general case of homogeneous turbulence subjected
to a cyclic compression and expansion, excluding
secondary motions and wall effects. We thus con-
sider a control volume in the core of a very large
chamber. The problem is then homogeneous, with
an imposed cyclic rate of strain S;; = (511,0,0) =
dU/dx, where S;; = 1/2(0U;/0x; + 0U;/dx;) is
the mean rate of strain tensor, U is the local mean
flow velocity and = denotes the direction of piston
movement. Since no external length-scale is given,
all relevant parameters scale with time. The exter-
nal parameter is the piston motion period 7I". The
time ¢ is non-dimensionalized by the period, T ,
here chosen for convenience to be T' = 1. The tur-
bulent inverse time-scale is defined by f = ¢/k with
an initial value of fo = €o/ko. Here k = 1/2ww;
is the turbulence kinetic energy, u; is the velocity
fluctuation around a mean, and ¢ is the dissipation
rate of k. In this paper we use € as a scale-providing
variable obtainable from the solution of the model
evolution equation, as implied by the standard k—¢
and second-moment closures (SMC). The turbu-
lence decay is characterized by f tending toward
zero (turbulence time-scales going to infinity).
When the non-dimensional strain parameter
n = Sk/e = S/f is large (S = 1/1/25;;S;;), this
means that the eddy turn-over time is very short
compared to the time scale of the imposed strain
rate. The rapid distortion limit can then be ap-
plied, i.e. the linear or ”production” terms involv-



ing S are predominant compared to the non-linear
or "slow” terms characterizing return to isotropy
and dissipation effects.

THE STRAIN RATE

In an internal combustion engine with the compres-
sion ratio 7, the rate of cyclic strain obtained from
the piston velocity V; is:
A%

dx 1

wcos(wt)
sin(wt) + (1 + -Tl-_)

where T' = 27 /w is the cycle period. We consider a
typical case where, for example, the piston stroke
covers 1 —1/r = 4/5 of the cylinder length, so that
the strain rate S(t) and its primitive, the cumula-
tive strain, I(t) = f S dt, are, respectively:

Su(t) =

(1)

w cos(wt)

@) sin(wt) + 5/4
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I6) = Insin(wt) +3) (3)
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Figure 1. Strain rate S(t) imposed.

KINETIC ENERGY AND TIME-
SCALE SOLUTIONS
The equations for energy and dissipation, without
presuming a model for the Reynolds stresses (i. e.
for both k£ — € and SMC) are written as:

dk

Ef- = -—R]_lSu — € (4)
de €

i (—ce1R11511 — c€2€)E (5)

where R;; stands for the turbulence stress com-
ponent Uyu;. Standard values of the model coeffi-
cients are ¢;; = 1.44 and c.o = 1.92. The equation
for the turbulent inverse time-scale f = ¢/k is read-
ily obtained from the previous:

fl

7

Introducing the anisotropy of the normal stress,
a(t) = Ru(t)/k(t) — 2/3, yields:

fTI =—(2/3+a)(ce1 —1)S — (ca = 1)f

= —-}—2’-;—1811(651 - 1) - (ce2 - 1)f (6)

(7)
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Explicit solutions for algebraic stress models are
given by Gatski and Speziale 1993, but only for con-
stant strains. Cambon and Scott 1999 produced
an analytic solution to the present problem, us-
ing Rapid Distortion Theory and a clever rescaling
of all variables including time, but RDT requires
f << S, which is not what the present solution
will show. Though RDT makes less modelling as-
sumptions than SMC, it cannot be deduced from
RDT that turbulence must decay on the long term,
since RDT is limited to short times after the ini-
tial condition that turbulence is already ”weak”
compared to the strain. The objective here is to
attempt to understand (limiting ourselves to sim-
pler algebra than in Cambon and Scott 1999) why
standard numerical simulations shown further lead
to systematic increase of turbulence kinetic energy
when using the EVM, and systematic decay with
the second moment closure.

QUASI ISOTROPIC TURBULENCE
When anisotropy a is assumed neglegible before 2/3
in (7), the inverse turbulent time-scale is implicitly
given by:

f_;(::_) — oxp (—(652 ~1) /otf (1) d'T) (1 + i; sin(wt))—n
(8)

Where n = 2/3(c.1 — 1). Another form of solution
suggested by a Reviewer, using the Floquet theory
(Bender and Orszag 1978) and significant algebra
is:

_ fo (1 + % sin(wt))un
1+ fo(cea — 1) f(f (1 + ‘—; sin(w'r)_" dr

(9)

Neither solution is explicit, but they take the form
of a periodic function with a quasi exponential de-
cay D(t) of the amplitude:

f(@)

£(&) = foD(t) (1 + % sin(wt)) o)

The objective in this section is to explain the nu-
merical simulation results presented further, hope-
fully without numerical integration. Replacing
f(t) in the integral, [; f(7)dr , by its initial
value, fo leads to the approximation D(t) =
exp (—(ce2 — 1) fot). This is admittedly a rather
crude simplification corresponding to (cc2 — 1) f? =
(ce2—1)f fo in the initial ODE, thus overestimating
the damping by the dissipation term, but neverthe-
less it allows to give a qualitative illustrations of
the behavior of f, which will be confirmed by the
classical numerical solutions shown further.

For an intermediate value of the strain param-
eter, 79 = So/fo 1 (initial turbulent time-
scale=piston period) we obtain the result in figure



2 where the turbulence has virtually vanished in
about 5 cycles.

For a weak strain, typically 1y = So/fo = 0.1,
the turbulence decay dominates, and turbulence
vanishes before the cycle is complete. The above
assumptions are most valid for strong strains, e.g.
Mo = So/fo = 10: the anisotropy has not enough
time to follow the cyclic strain-rate, and f(¢) ~
fo is legitimate. The analytical solution is plotted
on figure 3.
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Figure 2. Inverse timescale in quasi isotropic
turbulence for moderate strain rate parameter
Mo =1.
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Fig. 3. Inverse timescale in quasi isotropic
turbulence for strong strain rate parameter
1o = 10.

From the above we conclude that when the
Reynolds stress tensor is assumed isotropic, tur-
bulence can only be sustained through a number of
periods in case of strong strains, or rapid distortion,
but will eventually decay.

‘We now move to anisotropic cases and show first
that, when taking anisotropy into account, the use
of the eddy viscosity (EVM) assumption is erro-
neous. In the second moment closure (SMC) frame-
work, which has the advantage of using the exact
production terms, the turbulent frequency can only
decrease, while in the eddy viscosity (EVM) frame-
work, this frequency increases and scales with S.

LEENERGY BALANCE OVER A CY-

Let S;;(t) be any imposed homogeneous cyclic
strain-rate, we then seek the variation of the turbu-
lence kinetic energy over one cycle. We can write
the energy rate equation in a general form for ho-
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mogeneous turbulence:

dk

7 = RS- (11)
2

Ry = (aij +38i)k (12)

Si; is periodic, and in the long term, so is a;;. The
rate of change of turbulent kinetic energy is obvi-
ously overestimated when we neglect dissipation,
as seen from the following analysis. The energy
rate equation can be written in terms of stress
anisotropy and mean rate of strain:

dk 2
i —(aij + §6¢j)k5ij —€
dc  din(k) 2 €
i A R
k(T) T 2 .. Te
(k(O)) _/0 a:; Sijdt — 3 (Zijlo _A kdt

where

2 r_ [T2
S = [ 3hissa=0  (9)

since the cumulated strain I;; is periodic.

The isotropic part of the Reynolds stress tensor
contributes to zero net production over one cycle.
The growth over a period, whatever the turbu-
lence model (no modelling assumption needed at

this point), is
T
1>
)= /0 [(—aijsij) - ;] di

EDDY VISCOSITY MODELS
Obviously, the EVM, whereby the stresses are al-
ways colinear with the strain-rate, introduces max-
imum production, i. e. the EVM assumption
Qij = —2VtS,'j/k leads to:

k(T)

%(0) (14)

In(—=5+

k(T)

)= [ %~ Har )

Introducing the k — & model for the eddy viscosity:
52

)—/( “f2

Thus according to the k¥ — ¢ model (or any other
EVM), for weak initial turbulence or strong strain,
k increases, and there presumably exists a steady
solution with an average over one cycle for:

k(T)

In(e - 1)fdt

(16)

1
2C,

=2.35

<N >7p=< = > (17)

f



APPROXIMATE ANALYTIC SOLU-
TIONS TO THE SMC
The present investigation was initiated by the
full SMC numerical simulations of in-cylinder flow
within a European Joule project (Hanjali¢ et al
1999), which invariably lead to decay of turbu-
lence when a complete but valveless cylinder-piston
assembly was considered. The analysis in the previ-
ous section seems to explain this fact. The standard
second-moment closure, where the pressure-strain
term is modelled by the Rotta’s linear return to
isotropy model for the slow part and the isotropiza-
tion of production model (IP) for the rapid part,
and in the case of homogeneous cyclic compression,
reduces to:

dRy;
dt =-(1

with C; = 1.8 and Cp =
Using the relations: a(t) FORER

- —,—cl;’-k’ ; 4k —_R.,§— ¢, the equation for
e anisotropy a(t) is obtained:

dt —
o/ = —poS—(Ci—l)af (19)
[§(§ ~Co) + (5~ 200)a—a?| (20)

— C2)2Ry; S — aCie — -ge: (18)

R (t) 2.,

a =
By
3
h

Pa

Plotting the parabola p, shows it can be linearized
for —0.1 < a < 0.1. Next, reducing the Rotta
constant to, C; = 1., instead of 1.8, conveniently
cancels the af term. Thus, retaining the first two
terms, i.e:

4 2 2
a = —5(5 —-Cy)S+ (-—':'3' +2C3)Sa (21)
leads to the solution:
_ Ain() + 32D 4 4E-Cy)

(—T+20y)

which is shown on figure 4, where the anisotropy
remains moderate, i.e. between -.0.06 and 0.1 , in
agreement with the hypothesis.
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Figure 4. Stress anisotropy in response to the pro-
duction by mean rate of strain (including rapid
pressure-stmm term), with C1 = 1. and neglect of
Sa?.
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Furthermore note that this is actually an over-
estimation of the magnitude of a since the return
to isotropy constant (Rotta) has been significantly
reduced. This also justifies the assumption that the
production term in the k£ equation can be written
as (a+2/3)9 =~ 2/389, i.e. the "quasi isotropic tur-
bulence” assumption leading to the variation of f
given in figure 3 is confirmed.

CONJECTURE

From equation (14), only the anisotropic part may
contribute to increasing or sustaining the turbu-
lence energy over a cycle:

k(T)

" (23)
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Figure 5. Production term (—aS) with a from equa-
tion (22)).

Figure 5 shows the cyclic variation of the prod-
uct (—aS), using the solution for a, eq. (22), with
obvious zero period integral. Indeed:

T T 5., _
/(; aSdt= /0. (sin(wt) + Z) wcos(wt)dt =0
(24)

withm=§+202—1 so:

n(f(T)/f(0) = (25)

—/OTf.dt<0

Hence one can ’Conjecture’, that in the SMC
framework, when assuming a periodic solution for
all variables, production over one cycle is zero.
Thus over a long period of time the turbulence can
only decay.

This conjecture is not formally proven here,
but assuming periodic variations for the anisotropy,
strain, and cumulated strain, a;;, Sij, I;; leads to:

T T T
—/ a;jSijdt = — [aiinj]o -I-/
0 0

The first term [a;; ”]g is zero, and a model can be

da;;
—&il'lijdt

inserted in place of %—1 but it remains non trivial

to show that this second term amounts to zero, un-

less %-’- is directly proportional to the strain, with



constant proportionality coefficients. A similar re-
sult was exhibited by Cambon et al., using rapid
distortion theory assumptions, but the conjecture
seems to be more general. The RDT hypotheses
are not compatible with the fact that if a periodic
solution is assumed, the turbulence frequency must
have the same ordre of magnitude as the strain for
production to balance dissipation in equation (23).

NUMERICAL SOLUTIONS WITH
COMPLETE MODELS
Classical numerical computations are now pre-
sented, using both the SMC and EVM, with no
other simplification than homogeneity. In fact
these computations were performed first, then the
previous analytical study was undertaken to ex-
plain why all SMC simulations led to decay of
turbulence. The computation was performed for a
realistic situation for a cylinder diameter D = 100
mm and stroke L = 100 mm, with rotation rate of
2000 rpm, using air as fluid (v = 1.5 x 1075 m?/s).
Adopting the sinusoidal variation of piston velocity
over the stroke L, U, = Up sin(wt), the maximum
piston velocity is Up = 10.47 m/s.

Figures (6) and (7) show in parallel the typical
results obtained with the SMC and EVM for the
same initial conditions. Presented are the evolu-
tion of the turbulence stress components %;@; over
a series of cycles, and of the budget of k for a se-
lected characteristic single cycle.
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0.0

time, s (T=0.06s)

Fig. 6. The SMC computations: (top) Evolution of
Reynolds stresses ; (bottom) Blow up over a single
cycle of the Budget of kinetic energy (magnified by
X factor to fit the figure frame).
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Fig. 7. Same as fig. 6, but for the EVM.
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The results obtained with the SMC were ob-
tained using Rotta model of the slow part of the
®;; term and IP model of the rapid term, but any
other model would give similar behaviour and the
same outcome over a single period. From the model
computations we observe that the stresses increase
during the compression stroke and reach the peak
values at the top dead center with a change of sign
of the kinetic energy production. In contrast, the
integral of P,fVM over a period T is always posi-
tive, as follows from the expression (15). Together
with € it establishes a balance in time after some
cycles as in (17), which is erroneous.

COMMENTS ON THE EFFECT OF
THE WALL SHEAR
Although the above analysis is performed for ho-
mogeneous flows away from a solid wall, it reveals
several important facts. The most important out-
come is that a periodic compression/expansion can
not alone generate the turbulence. Yet in a typical
IC engine the flow is highly turbulent. Other ma-
jor sources of the in-cylinder turbulence are: the
shear in the fuel jets and air jets issuing from the
valves, swirl, tumble and other secondary motions
generated on purpose by adequate cylinder-piston
geometry, and the wall shear layer.

The latter effect can be estimated from a qual-
itative analysis of oscillating boundary layers. It is
known that such boundary layers will become tur-
bulent (at least during a part of a cycle) only if the
Reynolds number Res, = Upbgs/v, based on the
Stokes thickness 6g = 1/2v/w, exceeds the crit-
ical value of about 600. Here U is a reference
free stream velocity, and the Stokes thickness is a



measure of the ”penetration depth” in an oscillat-
ing flow. For a typical situation in an IC engine,
assuming that Up can be identified with the maxi-
mum piston velocity and evaluating w for a typical
rotation speed, Res (here, for the case considered,
~ 264) is much smaller than the critical value so
that the wall shear layer has no significant effect on
the turbulence generation. Hence, the only remain-
ing sources of turbulence are the fuel and air jets
and the large-scale vortical motions in the cylinder.

CONCLUSIONS

Both analytical and numerical integrations of the
second moment closures (SMC) for the Reynolds
stresses, tend to show that cyclic straining as in
I1C engines, approximated by homogeneous strains,
yields zero net production of energy over one cy-
cle. In fact, due to a steady decay in turbulent
stress because of viscous dissipation, the produc-
tion diminishes from cycle to cycle, and turbu-
lence is never sustained. This conjecture supported
by many simulations, and proven elsewhere using
rapid distortion hypotheses, was however not for-
mally proven herein.

In fact, if one assumes production-dissipation
equilibrium, then the turbulence frequency needs
to be similar to the strain rate, in which case one
is remote from the rapid distortion theory. On
the other hand it seems reasonable that non linear
terms providing lower anysotropy and introducing
dissipation, should lead to lower overall production
than the RDT, thus supporting the conjecture.

The eddy viscosity models (EVM), because of
the stress-strain systematic alignement they as-
sume, obviously lead to an artificial generation of
energy through the compression-expansion cycles,
and should not be used in such flows. ”Dissipa-
tion modifications” to the EVM model of the RNG
type or other, although reducing the energy, do not
seem to correctly address the problem which clearly
come from the production in cyclic strains.

An accurate computation of flow and turbulence
in an IC engine within the framework of single-
point statistical modelling requires the second-
moment (Reynolds-stress) closure level, since any
eddy-viscosity approach leads to a drastic overesti-
mation of turbulence production.

The complete inhomogeneous SMC simulation
of the the flow in a valveless cylinder-piston assem-
bly ([?]oulrp99) shows a very low level of small scale
turbulence, confined to the near-wall region, hardly
diffusing toward the center of the chamber. More-
over this flow region remains turbulent for only very
high Reynolds numbers (large cylinders and rota-
tion speeds), which may exist only in large real life
IC engines, while in standard size car-engine the
turbulence produced by wall boundary layer is in-
significant. A qualitative analysis shows that the
typical Reynolds number based on Stokes thickness
is far below the critical value, which would ensure
a sustenance of wall generated turbulence in an os-
cillating wall boundary layer.
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While in any valves piston-cylinder assembly a
weak secondary motion will usually appear as a
consequence of wall friction and piston movement,
this motion is too weak to contribute significantly
to turbulence production. Hence, the only source
of turbulence are the fuel and air jets and cavities
in piston or cylinder head.

The latter two conclusion indicates that an ide-
alized valveless piston-cylinder assembly, as often
used in the experimental research of engine flow, is
of little relevance to the study of turbulence in I1C
engines.
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