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ABSTRACT

The paper describes progress in developing a
wall function strategy to enable CFD predictions
of turbulent convective heat transfer to be made
without incurring the cost of a very fine near wall
grid. Analytical expressions are obtained for the
variation of velocity and temperature across the
near-wall sublayer, allowing one to compute the ef-
fective “resistance” of the viscous sublayer to heat
and momentum transport. The present work signif-
icantly extends the approach employed in conven-
tional wall functions, by accounting for the effects
of buoyancy, pressure gradients, convection and
variations in molecular transport properties. The
scheme is applied to the problems of forced and
mixed convection in a vertical pipe, separated flow
in an asymmetric diffuser, and to the opposed wall
jet with encouraging results.

INTRODUCTION

The usual modelling practice in the applica-
tion of CFD to real industrial problems is to adopt
a two-equation linear eddy-viscosity model in the
main region of the flow and a set of overall resis-
tance laws or ‘wall functions’ to bridge the very thin
region immediately adjacent to any wall that may
be present. This latter practice avoids the need to
resolve with a very fine grid the viscous sublayer
and ‘buffer’ regions across which there is a rapid -
and very complex — changeover from molecular to
turbulent transport mechanisms. Indeed, resolv-
ing in detail the near-wall sublayer may, depending
on the problem and the type of numerical solver
employed, raise computation times from three to
more than ten times that which would be needed
with wall functions. The motivation for retaining
wall functions is thus very clear.

Yet, the fact remains that the wall functions in
actual use in current commercial software are based
on presumed velocity variations that only pertain in
simple shear flows subject to a uniform shear stress
equal to that at the wall. The actual circumstances
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where one would like to make CFD computations
are, however, far removed from this idealized state.

In fact, at the dawn of CFD for turbulent flows,
the group from Imperial College were well aware
of some of the factors causing departures from
equilibrium behaviour and proposals were made
for accommodating these effects: Spalding (1967),
Patankar & Spalding (1972), Wolfshtein (1969).
However, these proposals fell into disuse partly be-
cause, as the execution speeds of computers rose,
researchers preferred to extend the detailed numer-
ical solution all the way to the wall, employing what
are termed ‘low-Reynolds-number’ models. More-
over, these ‘generalized’ wall functions also failed to
account for the thickening of the viscous sublayer
that was known to occur when the shear stress de-
creased significantly across the sublayer: laminar-
ization or re-laminarization as it is termed. Simple
log-law wall functions — while also not reproducing
this phenomenon — usually do less badly.

From the heat-transfer point of view, it must
also be said that none of the above-cited works
considered natural convection. While George and
his co-workers (see George & Capp, 1979) have
discussed the limiting form of a wall function for
natural convection on a vertical flat plate, the pro-
posed scaling is not suitable for use in the more
common mixed-convection situation where buoyant
action is a contributor to, rather than the only fac-
tor driving fluid motion.

The present work has been motivated by the
need to undertake CFD predictions of complex heat
transfer plant under mixed convection. Our at-
tention has been limited to vertical surfaces where
it is well known, Cotton & Jackson (1987), that
the low-Reynolds number k-¢ model does especially
well in capturing the suppression of Nusselt number
that may arise in situations where buoyant motion
aids the forced motion. Our aim has been to de-
velop a wall-function scheme capable of mimicking
that predicted by the model. Length limitations
mean that not all the equations can be cited in
full in the present work. Somewhat more detail



is available in Craft et al (2001) while a techni-
cal report, Gerasimov (2001), provides a complete
statement. It is emphasized that these are not just
mixed-convection wall functions. They have been
applied to forced-convection, including situations
where the molecular transport properties are highly
temperature dependent, and to the velocity field in
separated flow in a diffuser. In all cases considered
significant improvement is achieved over the log-
law form for an insignificant increase in execution
time.

The following sections provide an outline of the
analysis and consider applications covering both
buoyancy affected and purely forced-convection sit-
uations. Finally, the concluding section considers
briefly further developments of the methodology.

THE NEAR-WALL MODEL

Preliminaries

The treatment is developed within a finite-
volume numerical discretization of the flow. Fig-
ure 1 shows the near-wall control volume whose
west boundary coincides with the wall, with the
cell node at P. The viscous sublayer extends to a
distance y, from the wall and, initially, we assume
that y, (the value of normal coordinate at node P)
is greater than y,. The turbulent viscosity is taken
as zero within the viscous layer and for y > y, is
assumed to increase linearly with distance from the
edge of the sublayer:

e = cua(y” = yy)bo 1)
The constants ¢, and ¢; are those conventionally

adopted in l-equation eddy viscosity models (0.09
and 2.55) while y* is the dimensionless wall distance

pvyk;,/ 2/ Iy, where the subscript v denotes proper-
ties evaluated at the edge of the viscous sublayer.
While Chieng & Launder (1980) proposed that k in
the definition of y* should also be evaluated at y,,
this was found to render the result more sensitive to
the thickness of the wall adjacent control volume.
The form adopted in eq. (1) simplifies integration,
yet retains the essentials of a continuous effective
viscosity curve where the turbulent viscosity is zero
for a finite region next to the wall. Figure 2 suggests
a uniform molecular viscosity; for flows involving a
large temperature range significant variation in this
property may occur across the sublayer, and mod-
ifications to account for this are described later.

Thermal Analytical Wall Function

In the case of buoyant flows the temperature
enters the momentum equation as a source term
and so analysis begins with the thermal field. Ne-
glecting diffusion parallel to the wall the enthalpy
transport equation may be written:

oT oT 0 Ku oT
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Figure 1: Near-wall control volume.
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Figure 2: Assumed turbulent viscosity variation.

or, in y* coordinates:

_ (0T, LoT
Cun = P3kp (pU oz TPV 3y>
0 po, e\ OT
oy [(Pr + Prt> 8y*] 3)

The usual wall function assumptions lead
to convective transport being discarded on the
grounds that near the wall it is negligible in com-
parison with diffusive transport. In the present
work different strategies for including the main el-
ements of the convective terms have been tested,
the most stable approach being to retain only the
first term in non-conservative form, i.e.

oT
(PU‘@

Equation (3) can be integrated separately over the
viscous and turbulent regions with continuity of T
and 8T /dy*imposed at y* = y., resulting in an
algebraic expression for T' of the form

My

Cip =
' pkp

(4)
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where oy = Pra/Pry, Y7 = [1 + ay(y* — y)] and
Ath = —‘(Qwall/cp),uu/(pv vV kp)'



Velocity Field Wall Function

Following a similar path to the above analysis
the velocity variation in the near-wall control vol-
ume is described by

0 oU
ooz () 52| = C+0T - Top) @
where
v ou U 9P
and b = — (v?/ky) presgB represents the effect of

buoyancy on the mean velocity with 8 being the
coeflicient of thermal expansion.

The equation is again integrated separately
across the viscous and fully turbulent regions, re-
sulting in analytical formulations for U, which can
be used to compute the wall shear stress.

In the case of buoyancy-affected flows, solution
of the discretized momentum equation in the near-
wall cell also requires a source term representing the
average contribution of the buoyancy term across
the cell. In the present approach this term is eval-
uated analytically by integrating the temperature
profiles described above. The details of the result-
ing functions are omitted, due to space constraints,
but are given in Gerasimov (2001).

Mean Dissipation Rate

To solve the k equation in the near-wall cell one
needs to compute the average generation and dissi-
pation rates across the cell. The former is evaluated
by making use of the assumed turbulent viscosity
variation and obtaining OU/Oy from the analytic
expression for the velocity in the fully turbulent
part of the cell. For the average dissipation rate
we follow broadly the proposal of Chieng & Laun-
der (1980) in assuming a 2-part dissipation profile
across the wall adjacent cell. In the turbulent re-
gion the usual inverse dependence on distance is

taken
e =k?/(cy) (8)

and in the viscous layer a uniform limiting value is
adopted, Jones & Launder (1972)

& = 2wkp/y; 9)

However, whereas Chieng & Launder (1980) took
the matching point y4 to coincide with y,, we have
continued the inverse dependence of € with distance
closer to the wall, selecting y4 such that there is no
discontinuity of € at the matching point (Figure 3):

ky'?[(cwya) = 2vky/(y3) or yi=2c=5.1
(10)
The mean dissipation rate over the near-wall cell is
then obtained by integrating this two-part variation

to obtain
1 (26" K (y)
E=— +—In{= 11
Ye [ Yy 2.55 Yd ()
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This adoption of different thicknesses for the
viscous and dissipation sublayers not only brings
the € profile much closer to those obtained in DNS
studies, but also improves the prediction of the log
law in forced convection.
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Figure 3: Modelled € profile across the near-wall cell.

Temperature Dependence of Viscosity

In flows with significant heating some account
of the variation of molecular viscosity with tem-
perature should be made. Our initial strategy was
to adopt a linear variation of viscosity over the
sublayer, allowing the integration of the momen-
tum and enthalpy equations to be still carried out.
However, we were not successful in obtaining sta-
ble numerical solutions and, accordingly, the linear
variation was replaced by a hyperbolic formula:

S R
T+ bu(y* —up)

where b, = (ftwali — pv) /Hweu yi. The form cho-
sen gave a variation of u(7") very close to linear,
allowed the analytic integration to be performed
(albeit resulting in more complex expressions than
eq. (5)), but avoided the stability problems.

p= 0<y" <y, (12)

Inclusion of Laminarization Effects

It is well established that, if the shear stress
decreases rapidly with normal distance, so that the
stress at the edge of the viscous layer is 10% or more
below that at the wall, the viscous sublayer thick-
ness y, increases, leading to a marked reduction
in Nusselt number. Many simple mixing-length
and 1-equation models adopt empirical corrections
making the viscous layer thickness dependent on
such factors as pressure gradient or wall suction
rate.

The wall-function treatment of Johnson &
Launder (1982) also aimed to include such an ef-
fect. The same practice was initially followed in the
present study. However, consistency requires that
the turbulence energy appearing in y; should be
evaluated at y,, requiring extrapolation of the val-
ues of k at y, and y., a practice which was found to



be endemically unstable. Accordingly, some more
stable adjustment was sought which would bring
about the same effect. The practice adopted was
to adjust the level of turbulence energy dissipation
£ in the near-wall cell, making the factor by which
the expression in eq.(11) was altered, Fe, a func-
tion of an appropriate flow parameter. A dozen
alternatives were tested but the one exhibiting least
grid dependence and a satisfactory insensitivity to
changes in Reynolds number was the ratio of shear
stress at the edge of the viscous sublayer to that at
the wall. The following was the form adopted

(13)

Enew = Fagariginal
where

o {1 +2.250%38[1 — exp (—19302)] A > 1.02
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(14)
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The correlation was arrived at by determining the
values of F; required to bring close agreement with
the low-Reynolds-number form of the k- model for
mixed and forced convection in a pipe.

Further Refinements

The form of the wall function presented above
did not (in contrast to earlier proposals) suffer
greatly from grid dependence. However, when the
viscous sublayer y, occupied most or the whole of
the near-wall cell two steps were found desirable.
Firstly, low-Reynolds-number terms were included
in the form of the k-¢ model used in the external
domain (beyond the wall-adjacent cells). Secondly,
when y, becomes equal to or greater than y., the
wall functions need to be based on an analysis
where the viscous region occupies all of the control
volume. The details are given in Gerasimov (2001).

APPLICATIONS OF WALL FUNCTIONS

In all the cases discussed below care has been
taken to ensure that the results are independent of
the grid used in the main part of the flow. Fur-
ther, for the cases of forced and mixed convection
pipe flow, results have been obtained for a range
of thicknesses of the wall adjacent cells, and the
sensitivity of the results to the thickness of these
cells is one of the test criteria that were used to
discriminate between the alternative treatments.

Forced and Mixed Convection Pipe Flow

The first case considered is fully developed
isothermal pipe flow. The mean velocity profile in
conventional wall-law coordinates is shown in Fig. 4
for two Reynolds numbers. At the higher Reynolds
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number of 10° the predicted near-wall velocity falls
on the log-law line Ut = 2.4lny™ + 5.45 irre-
spective of the thickness of the wall-adjacent cell.
The near-wall cell size y; is roughly three times
the corresponding value of yf, and it can thus be
appreciated that for the case of y> = 50 most of
the near-wall cell lies within the viscous sublayer.
When the bulk Reynolds number falls below 10%
the additive constant in the log-law relationship is
known to increase. Figure 4 shows the experimen-
tal data of Kudva & Sesonske (1972) for Re=6753
with which the low-Reynolds-number k-e model is
in very close accord. It should be noted that with
the new wall functions, good agreement is also ob-
tained: the inclusion of F; to mimic laminarization
effects allows the upward displacement of the ve-
locity profile above the “universal” log-law to be
captured, and the results are still independent of
the size of the near-wall cell.
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Figure 4: Velocity profiles in fully developed pipe flow
at Re = 10° (upper graph) and Re = 6753 (lower
graph).

Figure 5 relates to mixed convection in a vertical
pipe. Due to the wall heating, the near-wall fluid
receives a buoyant upthrust, causing a local velocity
maximum and a rapid decrease of shear stress with
distance from the wall. This leads to a thickening
of the viscous sublayer and a reduction of Nusselt
number below that found in fully developed forced
convection pipe flow (the Dittus-Boelter correlation
denoted by the horizontal line). As noted by Cot-
ton & Jackson (1987), the low-Reynolds-number
k- model is quite successful at capturing this phe-
nomena, and can be seen to be in good agreement
with the data of Li (1994). The new wall func-



tion treatment is also seen to return values close to
the experimental data, again with little influence
of the near-wall cell size. The close agreement be-
tween the wall functions and low-Reynolds-number
model results has been verified over a far wider
range of conditions than those for which experi-
ments exist. Figure 5 also shows, for example, a
situation at an inlet Reynolds number of nearly 10°
and Grashoff number of 3.46 x 10° where the Nus-
selt number is reduced to only 40% of that found in
forced convection. Again the wall function results
are impressively close to those of the low-Reynolds-
number model.
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Figure 5: Nusselt number for mixed convection in
upward flow in a heated pipe at Re = 1.5 x 104,
Gr = 2.2 x 10® (upper graph) and Re = 105, Gr =
3.49 x 10° (lower graph).

Flow through Asymmetric Plane Diffuser

The next test case, that of separated flow
through a diffuser, is one where, due to the signif-
icant streamwise curvature associated with separa-
tion and reattachment, the flow is not adequately
described by a linear eddy-viscosity model in the
main flow — indeed, with the low-Reynolds-number
form separation does not even occure. However,
separation is predicted if one adopts the non-linear
eddy-viscosity model of Craft et al (1996). Fig-
ure 6 shows the behaviour with this model in three
versions: the original low-Reynolds-number form;
used in conjunction with the standard wall func-
tion, and with the proposed wall function. It must
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be said that the implementation of this last model
is not yet complete as the quantity F. takes the
value unity since 7, is greater than 7. Evidently
the form currently adopted in eq. (14) needs to be
adjusted to allow F; to take values less than unity
in cases where the shear stress rises with distance
from the wall. Nevertheless, even with the present
form a modest improvement is achieved compared
with the usual log law.
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Figure 6: Skin friction coefficient along the diverg-
ing wall of the diffuser using different near wall
treatments with the linear k- model (upper graph)
and non-linear EVM (lower graph). — - — Low-
Reynolds-number model; Standard wall func-
tion; - - - New wall function.

Opposed Wall Jet

The final test case is an isothermal, downward
directed wall jet measured by Jackson et al (2000)
and shown in Fig. 7. This is a preliminary test case
for future applications where the wall jet will be
hotter than the very slow moving upward bulk flow.
The present wall function results have again only
been obtained for the case where F; is unity. Never-
theless, Fig. 8 shows that the contours of turbulent
kinetic energy obtained with the new analytical
wall functions are considerably closer to those of
the low-Reynolds-number model than is achieved
by the standard wall-function prescription.
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Figure 7: The opposed wall jet flow.
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Figure 8: Predicted distribution of the turbulent ki-
netic energy in the opposed wall jet, using the linear
k- model with different wall treatments.

CONCLUDING REMARKS

The present analytical wall functions have
achieved a useful broadening of the range of near-
wall turbulent flows that can be computed without
providing a detailed and expensive resolution of the
near-wall sublayer. Use of the schemes reduces the
overall computing time required by between one
and two orders of magnitude compared with a con-
ventional low-Reynolds-number model.

For the first time a wall function approach
can be used to compute mixed as well as forced-
convection, with little sensitivity of the results to
the size of the near-wall cell. The initial applica-
tion of the scheme to the diffuser and opposed wall
jet flows have also shown promising improvements
over the use of standard wall functions.

Although these preliminary results are encour-
aging, a wider programme of tests still needs to be
carried out. It is also recognized that further re-
finements to the modelling need to be introduced,
for example to account for the thermal behaviour
of liquids with very high or very low Prandtl num-
ber. The work is made available at this stage in
the hope that other groups may wish to assist in
the testing and refinement programme.
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