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ABSTRACT

Temporal and convective derivatives of
velocity are computed from time-resolved
particle-image velocimetry data in the
streamwise-wall-normal plane of turbu-
lent channel flow. Advection of the small-scale
vortices embedded within the flow domi-
nates the small-scale behavior of the velocity
time-derivative; however, in a reference frame
traveling with the vortices, a marked decel-
eration represents the evolution of the flow.
This large-scale deceleration is conjectured
to be the dynamic influence of larger-scale
vortices present further away from the wall on
the smaller-scale vortices present closer to the
wall.

INTRODUCTION
The Navier-Stokes equation
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relates the local rate of change of the flow to
the advective, pressure, and viscous effects of
the flow, respectively, on the right-hand side of
(1). While Qu;/0t represents the local rate of
change of the flow in a fixed reference frame,
the fluid particle acceleration is given by the
material derivative of velocity:
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Therefore, the material derivative of velocity
embodies the pressure and viscous accelera-
tions imposed by the flow, the mechanisms that
influence its evolution. Although Ou;/dt em-
bodies the same evolution mechanisms, their
influence is often masked by the more domi-
nant advection of the small scales. The evo-
lution of the flow in a fixed reference frame
can be assessed by replacing u; in (2) with a
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constant convection velocity, yielding a bulk or
mean convective derivative.

Characterizing the evolution of the flow
(from both the statistical and structural view-
point) is necessary for extending optimal for-
mulations of large-eddy simulation (LES) sub-
grid scale modeling to higher Reynolds num-
bers. Optimal formulations are based upon
minimizing the mean-square error associated
with estimating the short-term dynamics of the
resolved (large) scales. This error is minimized

when Bi Bi
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where (%) represents a filtering operation that
defines the boundary between the resolved and
modeled scales of the flow. Defining this
boundary is one of the key elements in LES,
especially for proper structural modeling of the
sub-grid scales.

The statistical behavior of the temporal and
material derivatives of velocity has been stud-
ied in the context of scalar transport (Yueng,
1997; Hill and Thoroddsen, 1997; Pinsky et al.,
2000, for example). However, the relation-
ship between dominant vortical structures and
acceleration has not been investigated hereto-
fore. In this paper, dominant temporal- and
convective-derivative events are studied in rela-
tion to the vortical structures commonly found
in wall turbulence. This comparison is es-
sential for proper structure modeling of wall
turbulence in the context of optimal formu-
lations for LES sub-grid scale modeling be-
cause any distinct small-scale and large-scale
dynamic behavior can physically motivate the
selection of a suitable boundary between the
resolved and modeled scales.

EXPERIMENT

The experiments which form the basis of
this work are performed in turbulent channel



flow. The working fluid is air and the facility
is driven by a centrifugal blower. The appa-
ratus has a channel cross-section of 5.08 cm x
51.44 cm (2h x width, where h is the half-height
of the channel) and has a development length
of 216h. Particle-image velocimetry (PIV)
is used to measure two-dimensional velocity
(u,v) fields in the streamwise-wall-normal (z—
y) plane along the channel centerline separated
by a small time delay, facilitating the calcula-
tion of the temporal derivative of velocity. The
measurement domain is h X h, and 875 statisti-
cally independent pairs of velocity realizations
are acquired at Re; = u;h/v = 547 and 1734.

At high Reynolds numbers, it is difficult to
adequately resolve the temporal evolution of
the flow with standard PIV imaging equip-
ment, primarily due to the limited framing
rates of current CCD cameras. Standard cross-
correlation cameras used for PIV have a typical
frame rate of 30Hz. At high Re, the flow
would advect completely out of the field of view
during this time, making time-derivative calcu-
lations impossible. Therefore, current imaging
technology must be exploited in a more novel
manner to allow time-resolved PIV measure-
ments for time delays much smaller than the
camera frame rates.

With the above constraint in mind, a two-
CCD-camera arrangement is used in this re-
search to measure channel-flow velocity fields
separated by very small time delays, on the
order of microseconds. Specifically, a sepa-
rate PIV measurement is made with each CCD
camera, such that the second measurement oc-
curs slightly later in time relative to the first
(the cameras are focused upon identical flow
domains). Since the repetition rate of Nd:YAG
lasers is slow compared to the dynamics of
the flow, the field of view is illuminated by
two pairs of Nd:YAG lasers which, in concert,
produce four distinct laser pulses (two pulses
per CCD camera, each pair offset in time).
An added complication arises since the shut-
ter times of the CCD cameras are an order of
magnitude larger than the time delays consid-
ered in this research. Therefore, the particle
images meant to be viewed by only one CCD
camera must not reach the other CCD cam-
era. Fortunately, since the seed particles used
in this experiment are quite small (~ 1um),
light scattered from these particles maintains
the properties of the incident light. Specifi-
cally, the scattered light from particles of this
size maintains the polarization of the incident
light (Adrian and Earley, 1976). With this
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BS1: High-Energy Polarizing Beam Combiner
BS2: Polarizing Beam Splitter

C1: CCD Camera #1 (synchronized with LP 1, 2)
C2: CCD Camera #2 (synchronized with LP 3, 4)
HWP: Half Wave Plate

L1: Spherical Lens (1 diopter)

L2: Cylindrical Lens (30 mm focal length)

LPF: Linear Polarization Filter

LP 1, 2: Laser pulses 1 and 2 (horizontally polarized)
LP 3, 4: Laser pulses 3 and 4 (vertically polarized)
P: Prism

Figure 1: Experimental setup, viewed from above. Shad-
ing of lasers and cameras indicates which laser pulses are
synchronized with which camera.

in mind, the particle images viewed by each
camera are coded by polarizing the incident
light in a predetermined manner. This filtering
methodology is explained in greater detail be-
low in the context of the actual measurement
system. We refer to this collective experimen-
tal methodology as particle-image accelerome-
try.

Figure 1 illustrates the optical setup used
in this experiment. Four Nd:YAG lasers
(New Wave Research Gemini series) are used
as illumination sources. These lasers emit
120mJ/pulse at a repetition rate of 15 Hz and
have a pulse width of 6 ns. The first two pulses
provide illumination for the first camera (laser
and camera are shaded white in Figure 1),
while the second two laser pulses illuminate
the field of view for the second camera (lasers
and camera are shaded gray). The second two
laser pulses and the second camera are delayed
in time by 7 using a digital-delay generator,
such that the second camera views the flow
at a slightly later time than the first. In or-
der to distinguish between the sets of pulses,
the first two pulses (LP 1,2) are rotated to
horizontal polarization, while the second two
pulses (LP 3,4) are rotated to vertical polar-
ization with half wave plates (HWP). All laser
pulses are then combined along a common op-
tical path with a polarization beam splitter
acting as a beam combiner (BS1). The hor-
izontally polarized light from LP 1,2 passes
through the beam splitter, while the vertically-
polarized light from LP 3,4 is reflected onto the
optical path. All pulses then follow the same
optical path: through a standard spherical lens
(L1) and then through a standard cylindrical
lens (L2). The resulting light sheets are de-
flected 90° with a right-angle prism (P) from
the z;—z3 plane into the z1—z5 plane along the



centerline of the test section.

The scattered light from the seed particles
is imaged onto one of the two CCD cameras
depending on the polarization of the light. A
polarizing beam splitter (BS2) guides each po-
larization to the appropriate camera. The
horizontally polarized scattered light is trans-
mitted through the beam splitter and imaged
by the first CCD camera (C1), while the ver-
tically polarized light is reflected by the beam
splitter and imaged by the second CCD camera
(C2).

INSTANTANEOUS TEMPORAL
CONVECTIVE DERIVATIVE FIELDS

Figure 2(a) is an instantaneous velocity real-
ization in the streamwise—wall-normal plane of
the channel at Re, = 547. A constant advec-
tion velocity has been removed to visualize the
vortices that are advecting at this speed. Two
vortex cores are visible in the velocity field,
each circled to accentuate its spatial extent.
These vortices are thought to be the heads of
hairpin/hairpin-like vortices propagating as co-
herent groups in the streamwise direction. The
groups, referred to as hairpin vorter packets,
can contain as many as 10 vortices and extend
to nearly twice the outer length scale in the
streamwise direction (Adrian et al., 2000).

The field of the local rate of change of the
velocity shown in Figure 2(a) is presented in
Figure 2(b). A simple first-order, forward-
differencing scheme is used to calculate the
temporal derivatives of velocity, yielding

Ou; ul?(x,t +7) — uSl(x, t)
ot (X,t) ~ T ’ (4)

where C1 and C2 refer to the velocity fields
measured by cameras 1 and 2, respectively.
The circles of Figure 2(a) are replicated in
the Ou;/0t field in order to aid in associat-
ing dominant velocity time-derivative patterns
with the vortices themselves. A clear veloc-
ity time-derivative “signature” is associated
with each vortex and consists of a strong wall-
normal acceleration near the center of each
vortex, coupled with a weak streamwise de-
celeration at the same location. In addition,
a rotational pattern exists within the veloc-
ity time-derivative field outboard of the strong
wall-normal acceleration region on both sides.
Thus, the complete rate of change “signature”
associated with each vortex appears to be a
mushroom-like pattern.

In contrast, the mushroom-like pattern is
absent in the bulk convective-derivative field
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Figure 2: Example of instantaneous velocity and accelera-
tion behavior at Re, = 547. (a) Velocity field in reference
frame moving with visualized vortices; (b) Instantaneous
Ou; /0t field; (c) Instantaneous Dpu;/Dt field. Represen-
tative spanwise vortex cores are circled to indicate their
approximate spatial extent.

(Figure 2(c)), indicating that this pattern is
predominantly associated with advection of
the small-scale vortices. The bulk convective
derivative of velocity is computed in a frame

moving at the bulk velocity (Up)

D _ 0us 1. Ou
Dt ot Oz; (5)
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T
where x.=U,7i and
1 [2h
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represents the bulk velocity, the average
streamwise velocity over the height of the chan-
nel. The time-derivative and bulk convective-
derivative fields are shown with the same vec-
tor scaling, illustrating that the bulk convec-
tive derivative is nearly an order of magnitude
smaller than the temporal derivative. In con-
trast to the signature in the time-derivative



field, the vortices appear to be decelerating
slightly in the bulk advective frame. This de-
celeration is understandable since the induc-
tion of the vortices drives them in a direc-
tion opposite to the mean flow (i.e. upstream
against the mean flow). The deceleration is
especially large above and to the right of the
vortex center. In the reference frame of the
vortex, higher-speed fluid from the outer flow
is being swept toward the wall by the induction
of the vortex, and its motion is impeded by the
presence of lower-speed fluid, hence producing
a net deceleration.

Figure 3 contains a sample velocity field,
along with the associated velocity rate of
change and bulk convective-derivative fields,
at Re; = 1734. Three vortices are present
in the field of view and each of these vortices
produces a strong mushroom-shaped accelera-
tion event in the time-derivative field similar
to that seen at Re, = 547. As was noted
for the lower Reynolds number, the convective-
derivative pattern associated with the instan-
taneous spanwise vortices is a marked deceler-
ation in a frame of reference moving with the
vortices. In addition, with increasing Reynolds
number, the velocity time-derivative signature
appears to diminish slightly in coherence, while
the magnitude of the bulk convective derivative
increases slightly with Reynolds number. This
trend indicates that evolution effects increase
while advective effects decrease with Reynolds
number.

‘AVERAGE’ TEMPORAL AND CONVEC-
TIVE DERIVATIVE BEHAVIOR

From the examples presented in Figures 2
and 3, there appears to be a consistent
temporal- and convective-derivative pattern
associated with the spanwise vortices embed-
ded within the flow. The “average” character
of these patterns can be studied by considering
the conditional average of Ou;/0t and Dyu;/Dt
given the presence of a vortex core (A similar
procedure was introduced by Christensen and
Adrian (2001) to study the average behavior of
velocity given the presence of a single vortex
core in turbulent channel flow). These condi-
tional averages take the form

<%(x') Aa-(x>> (7)
and
(B () ®
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Figure 3: As Figure 2, but Re, = 1734.

where ).; is a vortex identifier called swirling
strength (7 is not an index in this definition,
but an abbreviation for the word “imaginary”).
Swirling strength is the imaginary portion of
the complex eigenvalue of the local velocity
gradient tensor; it is an unambiguous measure
of rotation (Zhou et al., 1999). Unlike vorticity,
swirling strength does not highlight regions of
intense shear, and it has been shown to be an
effective identifier of true vortex cores. Since
complex eigenvalues of the velocity gradient
tensor occur in conjugate pairs, the positive
imaginary part is assigned to A.. Therefore,
by convention, Ay > 0V x.

Direct computation of the conditional aver-
ages postulated above is impractical, so they
must be estimated in some fashion. Stochastic
estimation of conditional averages minimizes
the error between the conditional average and
the estimate in a mean-square sense (Adrian,
1988) (the reader is directed to this reference
for a comprehensive discussion of stochastic es-
timation). Studies of many types of turbulent
fields have shown that linear estimates are sur-
prisingly accurate and relatively simple to form
(Adrian et al., 1987). Therefore, the condi-
tional average presented in (7), for example,



can be estimated in a linear fashion as
ou;
(FLOPat)) %L, (©)

where the kernel L; is determined by mini-
mizing the mean-square-error between the es-
timate and the conditional average. This error

minimization gives
Ou;
>\ci !
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(In a similar manner, the conditionally av-
eraged bulk-convective-derivative can be esti-
mated by replacing du;/0t with Dyu;/Dt in
(10)).

From (10), it is clear that the estimate of the
conditional average is only a function of un-
conditional two-point correlations. Therefore,
(10) allows one to reconstruct the average ve-
locity time-derivative behavior associated with
any given value of A\, at x. However, it is im-
portant to note that since the event in the con-
ditional average is simply a single scalar value,
it is sufficient to specify A > 0 (a non-trivial
event). That is, the magnitude of the velocity
time-derivative within a given estimate is sim-
ply amplified or attenuated by the chosen value
of Aci. Therefore, since thresholding of A is
not necessary, the estimate remains objective
beyond the choice of event type and event lo-
cation in the wall-normal direction.

For reference, the estimate of the condi-
tionally averaged velocity field given the pres-
ence of a vortex core computed by Christensen
and Adrian (2001) is shown in Figure 4(a)
at Re; = 547. The average vortex pattern
shown in this figure is consistent with the span-
wise vortex cores visible in the instantaneous
velocity realization presented in Figure 2(a):
circular cross-section, clockwise rotation, and
induction of low-speed fluid away from the wall
(a Q2 event in the nomenclature of Wallace
et al. (1972)).

Figure 4(b) illustrates the estimate of the
conditionally averaged velocity time-derivative
field given the presence of the vortex core at
Re; = 547 (The conditionally averaged results
at Re; = 1734 are qualitatively identical to
those at Re, = 1734, but, due to space lim-
itations, are not shown). Near the center of
the vortex there exists a strong wall-normal
acceleration away from the wall, coupled with
a weak deceleration in the streamwise direc-
tion. Additionally, a roll-up in the acceleration
exists both upstream and downstream of the
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Figure 4: Linear stochastic estimation of u;, du;/8t, and
Dyu; /Dt given the presence of a vortex core at Re, = 547
for yref/h = 0.15. (a) Estimate of conditionally averaged ve-
locity; (b) Estimate of conditionally averaged du;/dt; (c) Es-
timate of conditionally averaged Dpu;/Dt.

vortex center. This average pattern is quite
similar to the instantaneous patterns seen in
Figures 2(b) and defines a consistent velocity
time-derivative signature associated with the
spanwise vortex cores. In addition to the dom-
inant small-scale event near the vortex center,
a larger-scale, relatively uniform deceleration
exists further away from the wall.

Figure 4(c) illustrates the estimate of the
conditionally averaged bulk convective deriva-
tive given the presence of a vortex core at
Re; = 547. The mushroom-like pattern that is
so dominant in the time-derivative field (Fig-
ure 4(b)) is noticeably absent in the bulk
convective-derivative field. Additionally, the
estimate of the conditionally averaged bulk
convective derivative contains a marked decel-
eration in both the streamwise and wall-normal
directions above the vortex center, quite sim-
ilar to the deceleration noted in the instan-
taneous field presented in Figure 2(c). How-
ever, the most striking feature of the bulk
convective-derivative field is the large-scale,
relatively uniform deceleration in both spatial



smaller scales of the flow. In contrast, the evo-
lution appears to be associated predominantly
with larger spatial scales. The marked large-
scale deceleration noted in the stochastically
estimated bulk convective derivative can be ex-
plained by the passage of larger, older, and
faster vortex packets past smaller, younger,

Figure 5: Time-derivative pattern associated with numeri-
cal advection of the vortex core shown in Figure 4(a). The
average vortex is numerically “advected” one gridpoint in
the streamwise direction in the spirit of Taylor’s frozen field
hypothesis and numerically differenced with the original av-
erage vortex to yield a simulated du; /0t field.

directions. This weak deceleration is also ev-
ident away from the vortex location in the
stochastically estimated Ou;/0t field; however,
its strength is quite small compared to the
small-scale advective signature of the vortices.
This large-scale deceleration is the imprint of
the flow evolution and may be due to the influ-
ence exerted by larger, older, and faster vortex
packets on smaller, younger, and slower pack-
ets closer to the wall.

The advection pattern of the spanwise vor-
tices embedded within the flow can be isolated
from the true accelerations using Taylor’s hy-
pothesis. The velocity-vector pattern shown
in Figure 4(a) was “advected” in the stream-
wise direction by a single gridpoint to simulate
the advection of the vortex downstream. The
difference between the “advected” vortex and
the original pattern was computed, yielding
a simulated velocity time-derivative field in a
fixed reference frame (Figure 5). The quali-
tative pattern of this velocity time derivative
is exactly the mushroom-like pattern noted in
the instantaneous and average velocity time-
derivative fields. Therefore, the mushroom-like
patterns seen in the instantaneous and aver-
age velocity time-derivative fields are associ-
ated predominantly with advection, while the
weaker, large-scale deceleration is associated
with the evolution of the flow.

SUMMARY

The hairpin/hairpin-like vortices and larger-
scale vortex packets present in wall turbu-
lence create clear patterns in both Ou;/0t
and Dyu;/Dt. The advection pattern of the
small-scale vortices consists of a mushroom-like
shape, with a strong wall-normal deceleration
coincident with the vortex center. This be-
havior indicates that Ou;/dt is highly intermit-
tent since it is predominantly associated with
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and slower packets closer to the wall.
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