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ABSTRACT

The objective of this paper is twofold: first, present
full transport and explicit algebraic models for
predicting kinetic stresses of particles suspended in
turbulent flows, and, second, perform an analysis of
particle motion and its stability in equilibrium
flows.

INTRODUCTION

A variety of two-fluid models within the framework
of the Eulerian continuum-modeling manner have
been proposed for the predictions of particle-laden
turbulent flows. The majority of these models have
been based on Boussinesq type eddy viscosity
approximations for the particle kinetic stresses. At
the same time, despite their computational
efficiency, the eddy viscosity models are unable to
properly describe essentially anisotropic turbulent
flows, especially two-phase flows, because the
anisotropy of the particle kinetic stresses may be
considerably greater than that of the fluid Reynolds
stresses. Concurrently, to improve the continuum
approach, several authors (e.g., Simonin, 1991;
Zaichik and Vinberg, 1991; Reeks, 1993; Lain and
Kohnen, 1999; Taulbee et al., 1999) proposed the
second-order models including the transport
equations for the particle kinetic stress tensor
components.

Although turbulence models based on the
transport equations for individual stresses have
unassailable advantages over the eddy viscosity
models, they result in very long computational times
and thus reduce drastically the efficiency of the two-
fluid continuum  approach for industrial
applications. Therefore, it is worth to develop
algebraic stress models for the particulate phase by
analogy with the familiar ones for the turbulent
fluid. A methodology of obtaining algebraic models
implies to invoke the concept of equilibrium
turbulence states, and moreover the equilibrium
state flows are very useful as benchmark flows for
validating the transport second-order closure
models. That is why we consider the particle
transport in equilibrium turbulent flows. As is
known, the equilibrium states can be realized in
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both homogeneous flows and inhomogeneous layers
if the turbulence production equals to the turbulence
dissipation. In these cases the convection and
diffusion effects are negligible, and the fluid, fluid-
particle as well as particle anisotropy tensor
components in the final stage of evolution achieve
some equilibrium constant values.

In this paper, the concentration of the dispersed
phase is assumed to be small enough that the ‘back-
effect’ of particles on the fluid turbulence and inter-
particle collisions may be not taken into
consideration.

GOVERNING EQUATIONS

The particle transport model under development is
based on a kinetic equation for the probability
density function (PDF) P(x,v,t) which is defined
as a density of particles located in a spatial position
x, with a velocity v, at time ¢. The main
advantage of statistical methods can be attributed to
the fact that a closure performed at the PDF level
allows the generation of some consistent
constitutive relations for the particle turbulent
stresses as well as the inter-phase fluid-particle
correlations instead of employing apart closure
approximations of these terms directly in the
moment equations. The kinetic equation for the
PDF of the velocity distribution in a turbulent fluid
flow field, which is modeled by a Gaussian random
process with a known autocorrelation function, is
written in the form (Zaichik, 1999)
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Here U, and V, are the averaged velocities of the
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fluid and particulate phases, F, is an external force

(e.g., gravity) acceleration, 7, 1is the particle
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response time, and (w;u)) are the fluid Reynolds

stresses. The left-hand side of (1) describes
evolution in time and convection in phase space,
whereas the terms on the right side characterize the
interactions between particles and turbulent fluid
eddies. Equation (1) is valid for heavy particles, the
density of which is much greater than that of the
fluid (in this case, the drag force acting on a particle
by the surrounding fluid flow is only of
importance).

Equation (1) generates a set of governing
conservation equations representing the particle
fraction, momentum, and turbulent stresses as the
appropriate statistical moments of the PDF
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In these equations, the coefficients f,,g,,/,, and
h, characterize an entrainment of particles into the

fluctuating motion of the carrier fluid, namely, they
indicate whether particles respond to turbulent
velocity fluctuations and determine the degree of
coupling between the fluid and particulate phases.
To calculate these coefficients one has to know the
velocity correlation of fluid motion along a particle
trajectory. If the velocity auto-correlation function is
described by the frequently used exponential
approximation ¥, (¢) = exp(-t/ T,,) where T;, is
the eddy-particle interaction time, the entrainment
coefficients take the form (Zaichik, 1999)
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EQUILIBRIUM TURBULENT FLOWS

In uniformly sheared and strained as well as other
single-phase turbulent flows when convective and
transport effects can be neglected, there is a wealth
of evidence from physical and numerical
experiments which suggest that an equilibrium state

is ultimately reached. This equilibrium state is
characterized by constant values of b, and all

appropriate normalized higher-order correlations.
By analogy, the turbulent motion of particles is
regarded as equilibrium one if the convection and
diffusion effects are negligible, and consequently
b, as well as other normalized correlations do not

change in time. Here b, =(uu’)/2k-35,/3 and
b,,=(viv;)/2k,~6,/3 are the fluid and particle
anisotropy tensors, where k=(uu;)/2 and
k,=(v,v;)/2 denote the fluid and particle

turbulent kinetic energies. Thus, in the equilibrium
state, the triple moments of velocity fluctuations in
(4), which characterize the diffusion transfer, turn
into zero, the set of the conservation equations for
the statistical moments of the PDF is broken, and
the second-moment equations describing particle
kinetic stresses become closed. Moreover, in this
case, time evolutions of the second-order fluid and
particle velocity fluctuations obey an exponential
law
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where ¢ is the dissipation rate of the fluid

turbulence energy, and P=-(uu))U,, is the

turbulence production.
With accounting for (5), equation (4) takes the
form
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It is evident that (6) represents a closed system of
algebraic equations, from which one can find the
second-moment velocity fluctuations of particles if
the mean velocity gradients of the continuous and
dispersed phases as well as the turbulent stresses of
the fluid are known.

Let us consider the particle transport in uniformly
sheared and strained turbulent flow when the mean
velocity gradient of the fluid can be given by
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where a =0 corresponds to the axis-symmetric
strain flow, and o =1 relates to the plane one.
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If an external force, F,, is homogeneous,

substitution of (7) into (3) yields the following
relation for the mean velocity gradient of the
dispersed phase
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The steady-state solution (8) may be realized with
the proviso that —(47,)"' <SS, <[2(+a)r,]".
As is seen from (8), the mean velocity shear, S,,

does not affect the strain rate of particle velocities.
Conversely, the mean strain rate, S|, , influences on

the particle velocity shear increasing it. Therefore,
in spite of the fact that the shear and the strain
effect independently on the fluid velocity field, a
superposition of these two effects does not take
place in respect to the mean velocity field of the
dispersed phase.

Consider first the behavior of particle fluctuating
velocities in uniformly sheared homogeneous
turbulence with no strain (S,;, =0). The properties

of fluid-phase turbulence have been chosen
according to experimental data by Tavoularis and
Karkin (1989): b, =0.21,5,, =-0.13,b,;, =-0.08,
b, =-0.16, S,(k/e)=5, and P/e=16. The
eddy-particle interaction time is assumed to be the
same recommended in Simonin et al. (1995),
T,, =0.482k /¢ . Figure 1 shows the behavior of the

particle velocity anisotropy tensor components,
b,,, predicted by (6) versus the product of the

particle response time, 7, , and the shear rate, S, .
The magnitudes of b, at 7,S,, =0 correspond to
the components of the fluid anisotropy tensor, b, .

As is seen, the particle velocity anisotropy increases
with an increase in both the particle inertia and the
mean velocity gradient, and the streamwise velocity
fluctuations of high-inertia particles are essentially
more than the ones in the normal and spanwise
directions. The results predicted are in good
agreement with LES (Simonin et al., 1995) and
DNS (Taulbee et al., 1999). Moreover, the model
predictions are consistent with aforementioned
computations and theoretical results by Reeks
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(1993) and Liljegren (1993) regarding the effect of
a mean velocity gradient on the particle streamwise
velocity variance in shear flows. This variance is
strongly affected by velocity gradients and, due to
the lack of small-scale dissipation of velocity
fluctuations, can exceed the fluid one. Figure 2
displays the dependencies of the particle kinetic
energy normalized by the fluid turbulent energy on
7,S), . It is interesting to note that this dependence

for the equilibrium solution has a non-monotonous
form and passes through a small maximum before
diminishing. In Fig. 2, the predictions of Fevrier
and Simonin (1998) are demonstrated as well.
There is quite good agreement about tendencies
given by both models.

In Fig. 1 and 2 are also depicted the particle
turbulent properties corresponding to the steady-
state solution of (6) at y =0 (Zaichik, 1999). As is
evident from Fig. 1, the equilibrium and steady-
state values of the anisotropy tensor components are
found to be close. However, the behavior of the
relative turbulent energy of particles in both cases is
entirely different because k,/k increases with

7,5, after passing a weakly expressed minimum.

Consider next the effect of strain on the second
moments of particle velocity fluctuations in a
homogeneous flow with plane expansion (S;, >0)

or contraction (S;, <0) in the absence of shear
(S;, =0). The turbulence parameters of the fluid
are taken as: b, =-0.2 and b,, =0.2 for S|, >0,
b,=02 and b, =-02 for S, <0, by;=0,
S,kl/e)=3, and Ple=16. Figure 3
demonstrates the equilibrium particle fluctuating

velocity intensities related to corresponding values
of the fluid as functions of 7,S),. A growth of

anisotropy of velocity fluctuations with increasing
particle inertia in both expansion and contraction
engages our attention. In the case of expansion, the
fluctuating energy of high-inertia particles can
considerable exceed the turbulent energy of the
fluid. However, the particle velocity variance in the
stretched (x,) direction is smaller than the fluid

one and decreases with increasing 7, , whereas the

behaviour of that in the squeezed (x,) direction is
of opposite tendency. In the spanwise direction, the
particle velocity variance remains below the fluid
stress and reduces with 7,. These features are in

general agreement with DNS computations of
Mashayek et al. (1999).

The near-wall turbulent layer with logarithmic
velocity profile is not a homogeneous flow since the
mean shear rate, S,,, increases when the distance



from the wall decreases, however, it is equilibrium
one because the condition P/& =1 is fulfilled. In
this case, according to (5), y =0, and hence the

equilibrium  solution of (6) will represent
simultaneously the steady-state one. The parameters
of fluid turbulence are given in accordance with
experimental data by Laufer (1951) as: b, =0.22,

by =-015, by; =-0.07, b, =-0.16, and
S),(k/¢&)=3.1. Figure 2 shows that the behavior of

the particle turbulent energy in the near-wall layer
is like as it takes place in the steady-state
homogeneous shear flow. Moreover, as is obvious
from Fig. 4, the effect of particle inertia on the
anisotropy tensor components is identical to that in
the uniformly sheared flow field. In Fig. 2 and 4,
the results of LES computations by Fevrier and
Simonin (1998) for a logarithmic layer and by
Wang and Squires (1996) for a channel flow (at
y, ~100) are also displayed.

Figure 1. Streamwise (b

p11)> normal (b5, ),
spanwise (b, 5, ), and shear (b,,, ) components of

the particle velocity anisotropy tensor in the
uniformly sheared flow: 1 - equilibrium solution,
2 - steady-state solution, 3- LES by Simonin et al.
(1995), 4 - DNS by Taulbee et al. (1999).
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Figure 2. Particle-to-fluid kinetic energy in the
uniformly sheared (1,2,3) and near-wall (4,5) flows:
1,3.4 - authors’ model; 1,2 - equilibrium solution;
3 - steady-state solution; 2,5 - model by Fevrier and
Simonin (1998).
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Figure 3. Normalized particle fluctuating velocity
intensities in the homogeneous plane strain flow:
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Figure 4. Streamwise, normal, spanwise, and shear
components of the particle velocity anisotropy
tensor in the near-wall flow: 1 - predictions,

2 - LES by Wang and Squires (1996).

STABILITY OF EQUILIBRIUM STATES

In what follows an analysis is conducted to examine
the stability of the particle transport in the
equilibrium turbulent flows considered. To do this,
a system comprising equations for the particle
anisotropy temsor, b,., and the normalized

Py’
k,=k,/k, is invoked. This

equation system follows from (4) and has the form
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Equations (9) are linearized about equilibrium
solution, for which purpose the variables are written
as the sums of the steady equilibrium and unsteady
disturbed terms

— ped ’ I —1¢ | L'
bpij—bpij+bpij’ kp_kp +kp

where b;, ; and l?l’, are assumed to be small

compared respectively to 5,7 and I?;". The time

dependence of the perturbation quantities is taken as
exp(wt/7,), and by this means the stability

analysis of the problem reduces to the evaluation of
the ecigenvalues of appropriate matrix. These
eigenvalues may be complex. A complex eigenvalue
with a positive real part ®, indicates that a

perturbation will grow and hence the equilibrium
solution is unstable.

The eigenvalues obtained for the uniformly
sheared and near-wall equilibrium flows are
exhibited in Fig. 5 and 6. As a result it is found
that, in the simple homogeneous shear flow, there
are three eigenvalues one of which changes the sign
of its real part at 7,5, £7.5, and, hence, the

equilibrium state of particle fluctuating motion is
stable if 7,5, <7.5 and unstable if 7,S,, >7.5.

The existence of a critical value of 7,S), testifies

that the equilibrium stable particle transport in the
homogeneous flow field with a constant mean
velocity gradient takes place only at relatively small
values of the particle response time and is not
physically realizable for high-inertia particles. In
contrast to this, the equilibrium motion of particles
in the near-wall shear flow is stable over the entire
range of 7,S),. Furthermore, the linear stability

analysis shows that the equilibrium statistics of
particle fluctuating velocities in homogeneous flows
with contraction and expansion are stable for all
cases when the averaged particle momentum
equations possess steady-state solutions.

20 . s
10’
Figure 5. Real parts of the eigenvalues for the
uniformly sheared flow: 1 — real eigenvalue;
2,3 — complex-conjugated eigenvalues.
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Figure 6. Real parts of the eigenvalues for
the near-wall flow: 1 — real eigenvalue;
2,3 — complex-conjugated eigenvalues.
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ALGEBRAIC MODELS OF STRESSES

By means of the basis equilibrium hypothesis that
convective and transport effects can be neglected,
the second-moment transport equations (4) yield a
closed system of algebraic equations for the
determination of the particle stress anisotropy in
terms of the mean velocity gradients

9,
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It is clear that (10) is an implicit algebraic stress
model since the anisotropy tensor, b, , appears on

b .=

py

g
both sides of the equation. As is well known, the
computational efforts of using implicit model in
complex turbulent flows may be excessively large
and even be of the same order as by employing the
full transport stress model. With a view to construct
a more numerically beneficial algebraic model
which provides an explicit relationship between the
particle stress tensor and the mean velocity
gradients, we employ an iteration procedure to
resolve the implicit algebraic equations. This
procedure is based on the following iteration
expression of the particle stress production in the
right-hand side of (10)

Ve +b0V,, ) (11)
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n+l 2 n
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where 7 is the number of iteration. Equations (10)
and (11) generate a hierarchy of explicit algebraic
models for the kinetic particle stresses. The first
term of the iteration procedure results from the
isotropic approach in (11), namely, b,, =0, and
gives a linear relationship between the stress and
mean velocity gradient tensors in accord with
Boussinesq’s hypothesis. The second term of the
iteration  expansion yields a  quadratic
approximation for the particle stresses in terms of
the mean velocity gradients. In Fig. 7, the first



linear and second quadratic approximations are
compared with the exact solution of (6) for the
homogeneous shear flow (results for the near-wall
flow are similar to those presented in Fig. 7). It is
obvious that the quadratic approximation transcends
substantially the linear one and gives a sufficiently
correct description of stress anisotropy. Although
algebraic models are strictly justified only for
equilibrium flows, it is hoped that, by analogy with
single-phase turbulence, the quadratic explicit
algebraic model developed may be useful in the
calculations of complex non-equilibrium two-phase
turbulent flows.
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Figure 7. Particle stress anisotropy tensor
components in the uniformly sheared flow:
1 - exact solution, 2 - linear approximation,

3 - quadratic approximation.

SUMMARY

On the basis of results presented one can draw the
following conclusions:

1. The particle transport model based on a kinetic
equation for the PDF of the velocity distribution
yields the equilibrium fluctuating velocity
anisotropy which is in good agreement with LES
and DNS computations for homogeneous shear,
near-wall as well as strain turbulent flows.

2. The stability analysis reveals i) the existence of a
critical particle response time beyond which the
equilibrium particle fluctuating motion in the
uniformly sheared flow is unstable, ii) the
possibility of stable particle transport in the near-
wall shear flow over the entire range of particle
inertia, and iii) the occurrence of the stable particle
fluctuating velocity statistics for the equilibrium
homogeneous flow with contraction and expansion
when the averaged particle momentum equations
posses steady-state solutions.

3. The explicit quadratic algebraic model developed
gives a plausible prediction of the particle stress
anisotropy.
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