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ABSTRACT

A few problem areas in materials science are
reviewed with regard to the importance of fluid
flows, in particular flow instabilities and tur-
bulence. One class of such flows in melts are
driven by surface tension gradients caused by
temperature differences. These are frequently
responsible for instabilities or turbulence that
is often undesired in practical processes, as in
crystal growth. Another area that is of obvious
importance in materials processes is solidifica-
tion. Fluid flows are crucial here, since the
growth rate, the shape and size of the solid
structures are greatly influenced by melt con-
vection.

THERMOCAPILLARY CONVECTION

Thermocapillary convection becomes im-
portant whenever a strong temperature gra-
dient is present over a free liquid surface, in
particular if the surface tension is strong. Also,
if the dimensions of the liquid volume is small,
surface forces will be relatively more important
compared to volume forces. These conditions
are frequently satisfied in materials processes
such as welding and crystal growth. Also in mi-
crogravity experiments with fluids, thermocap-
illarity may typically be the dominant source
of convection.

The basic phenomenon of thermocapillary
convection is understood by considering a
small section of a free liquid surface with a
temperature dependent surface tension,

o =00+ (T - To), (1)

in the presence of a temperature gradient
along the surface. In the typical situation
of a surface tension that decreases with tem-
perature (y < 0), the surface tension thus
increases in the direction of decreasing temper-
ature along the surface. Considering a force
balance over a thin control volume contain-
ing the free surface it is clear that the differ-
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ence in surface tension must be balanced by
a shear stress in the fluid. The typical pic-
ture is thus that the fluid surface is dragged
towards cold spots at the surface. Thermo-
capillary convection is often characterized by
the value of the Marangoni number, defined as
Ma =~ATL/(au),i.e. aPeclet number based
on the thermocapillary velocity scale YAT/p.
Here AT is the characteristic temperature dif-
ference, L is a length, o thermal diffusivity, u
viscosity.

The above would typically be true for pure
fluids. In the presence of a possibly surface
active additive, concentration gradients would
drive a solutocapillary flow in a similar way.
However in the presence of a surfactant which
is concentrated on the surface, there is a more
complicated coupling between the flow field
and the surface tension: consider a stagnation
point flow on the surface where fluid rises to
(descends from) the surface and spreads out
(converges) along the surface. The surface is
thus stretched (contracted) and the local sur-
face concentration of surfactant would tend
to decrease (increase). With a decreased (in-
creased) concentration the surface tension in-
creases (decreases), and a restoring force thus
appears. This effect could be termed surface
‘elasticity’. Also, depending on the properties
of the surfactant, the surface may have dila-
tional and shear viscosity to various degrees.

Model problems inspired by crystal growth
When growing crystals for electronic and op-
tical purposes, the challenge is frequently to
produce a single crystal of precisely controlled,
highly uniform properties. This is presently a
large industry of obvious and growing impor-
tance for electronics, optics, laser technology
and other applications, with the largest area
being semicondutors accounting for 60% of the
20000 tons produced in 1999, Scheel (2000).
One possible future application area would be
high temperature superconductors, the succes-



ful commercialization of which would be of
immense economic importance.

There are many different processes that are
used, see Scheel (2000) for a current review,
but here we are concerned with methods where
the crystal grows by solidification from a melt,
where convection may have desirable or un-
desirable effects, Langlois (1985). Sketches
of a few common geometric arrangements are
shown in fig 1. The most important econom-
ically would be Czochralski growth where the
heated melt is kept in a crucible, and a crys-
tal is pulled up by slowly raising a cooled seed
crystal in contact with the melt. In horizon-
tal Bridgman growth the melt is contained in
a boat, which is moved in a temperature gra-
dient, so that the melt solidifies in a controlled
manner. In the float-zone method, an intense
heat source is passed along a polycrystalline
rod, so that the material melts and re-solidifies
as the heat source passes. There is thus a liquid
bridge of melt which is held by surface tension
forces between the two solid ends of the rod.
This method has the advantage that it is con-
tainerless and thus holds a promise for very
pure crytals, but it is complicated by the fact
that gravity may have a large influence on the
suspended melt drop.
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Figure 1: Sketches the geometrical configurations in a)
Czochralski growth, b) floating zone, c¢) Horizontal Bridge-
man growth.

Common features of these methods are the
presence of a free surface and very high temper-
ature gradients. This is thus indicative of the
possible importance of thermocapillary convec-
tion. Also, the heat and mass transfer in the
melt determines the homogeneity of the fin-
ished crystal. The importance of thermocap-
illary convection in such systems was pointed
out already by Chang and Wilcox (1976), Chun
and Wuest (1979), Schwabe and Scharmann
(1979) and numerous studies have since then
investigated different aspects of thermocapil-

12

lary convection in configurations resembling
crystal growth processes.

The Floating-Zone.

A common model problem is the half-zone,
see figure 2b. In this configuration a liquid
drop is held between two circular cylinders by
surface tension forces. The flow is driven by
maintaining a temperature difference between
the two rods causing a temperature gradient,
and hence a surface tension gradient, along the
free surface. The main objective of most stud-
ies relating to the half-zone has been to under-
stand the stability characteristics of the steady
basic thermocapillary flow. The motivation
for this is the observation that crystals grown
with the float-zone method typically have pe-
riodic axial variations in dopant concentration,
so called striations, which are attributed to
an oscillatory thermocapillary convection in
the melt. The fluid mechanical problem that
presents itself is thus to understand the flow
instabilities that lead to unsteady motion.

= | Tcold
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Figure 2: Sketches of a few model problemsrelated to crystal
growth a) Annular configuration, b) Half zone, c) Horizontal
rectangular cavity.

The fundamental instability mechanisms in
thermocapillary flows in even simpler geome-
tries, i.e. infinitely long plane layers and cylin-
ders, were studied by Smith and Davis (1983),
Xu and Davis (1984) and Smith (1986), who
identified among other things the fundamental
thermocapillary wave instability. Theoretical
studies of stability in half zones include stud-
ies of linear and energy stability theory by Shen
et al. (1990), Neitzel et al. (1991,1993), Wan-
schura et.al. (1995), Chen et al. (1997) and
Levenstam et al (2001). Full numerical sim-
ulations of the developed instability has been
made by, among others, Rupp et al(1989), Lev-



enstam and Amberg (1995) and Levenstam et
al (2001).

Experimentally the half zone has been a
popular model geometry, starting with Preisser
et.al. (1983). See also the recent review by
Schatz and Neitzel (2001). It is quite difficult
to do well controlled experiments using tech-
nically interesting fluids with small Prandtl
numbers such as semiconductor melts. In-
stead a large literature has appeared that study
thermocapillary flows using fluids with Prandtl
numbers greater than one, typically silicon oils
or molten salts. Early such studies are those
by Preisser et al. (1983) and Velten et al.
(1991). There have been attempts to measure
the stability characteristics of flow in systems
resembling real float-zones, using real semi-
conductor materials, Croll (1989, 1991) and
Levenstam et.al. (1996), but when trying to
understand the fundamental instabilities, these
experiments are hampered by uncertainties in
the material properties, difficulties in visualiz-
ing the flows, etc.

The picture that emerges is that, unfortu-
nately but not very surprisingly, the quantita-
tive and qualitative features of the oscillatory
flow depend strongly on the Prandtl number
of the fluid. Figure 3 shows the critical ther-
mocapillary Reynolds number Re = Ma/Pr =
Y(Thot —Teotd) H/(vp) vs Prandtl number Pr =
v/a for the half zone problem in fig 2b (Lev-
enstam et al, 2001). In low Prandtl number
fluids below 0.05, corrsponding roughly to in-
teresting metal and semiconductor melts, the
flow becomes oscillatory at a Re = 6000, inde-
pendent of Pr. In this Prandtl number range,
the onset of oscillations is thus an entirely iner-
tial hydrodynamic instability, Levenstam and
Amberg (1995), Wanschura et al. (1995), and
the proper parameter for characterizing the
instabilities at low Prandtl numbers is thus
the thermocapillary Reynolds number, rather
than the Marangoni number. In the high
Prandtl number range, above Prandtl numbers
about 1, the mechanism is quite different and
involves a complicated coupling between the
temperature and velocity disturbances related
to the thermocapillary wave, Wanschura et.al.
(1995). The critical Reynolds number contin-
ues to decrease with increasing Prandtl num-
ber, while a corresponding critical Marangoni
number (Ma = Re - Pr) increases.

It is interesting to note that in the region
with Prandtl number just below unity (ac-
tually 0.05 < Pr < 0.8), the axisymmetric
flow is much more stable than outside of this
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Figure 3: Stability of the flow in a half zone. Below the
lower curve the flow is steady and axisymmetric. At Prandtl
numbers above 1, the flow is oscillatory above the curve. At
low Prandtl numbers the flow is steady and 3D between the
full and the dashed line, and oscillatory above the dashed
line.

range, with critical Reynolds numbers around
ten times larger than the levels outside. This is
due to the fact that the action of the thermo-
capillary stress changes qualitatively with the
Prandtl number here; In the low range, when
convection of heat starts to be important at
Pr =~ 0.06, the thermocapillary stress gener-
ated by the inertial instability present there,
is actually a restoring force that counteracts
the instability. This competition stabilizes the
flow and raises the critical Reynolds number
by an order of magnitude, and gives rise to
a complicated sequence of critical modes as
the Prandtl number is increased. When the
inertial instability loses its importance to a
thermocapillary instability mechanism around
Pr = 0.8 the critical Reynolds number again
drops dramatically. Similarly it can be seen
that the thermocapillary stress related to the
disturbance is now destabilizing.

In this context it is natural to try to ap-
ply active feedback control to suppress oscil-
lations. In the half zone this has been at-
tempted by Petrov et al (1996) who applied a
non-linear control algorithm using a local tem-
perature measurement close to the free surface
and heating a thermoelectric element placed at
a location diametrically opposite the measure-
ment. The oscillations could be suppressed at
the sensor for Marangoni numbers 1.3 times
the critical value, however infrared visualiza-
tion revealed the presence of standing waves
with antinodes at the feedback element and the
sensor.

Practical float zone processes and experi-
ments are (naturally) more complicated than
the half zone discussed above. The tempera-



ture differences that are used are such as to
give thermocapillary Reynolds numbers in the
order O(10%) rather than the O(10%) — O(10%)
discussed so far. Experimentally a ‘periodic’
and a ‘turbulent’ regime has been observed,
Croll et.al. (1991), in terms of the regularity
of the observed striation patterns in the fin-
ished crystals. Lan et.al. (2000) have recently
presented a simulation of a full Si float zone
at a realistic Reynolds number of 10°, show-
ing a growth speed that is apparently chaotic
in time. Model experiments that investigate
the chaotic regime in a systematic fashion have
appeared only recently, Ueno et.al. (2000),
Kawamura et.al. (2001), who manage to make
experiments with silicone oil in a half-zone with
a driving temperature difference up to 100 K,
i.e. 4-5 times the critical value.

. Notice that the thermocapillary Reynolds
number actually overestimates the actual
Reynolds number in the flow. Typically the
product of actual maximum velocity and di-
ameter divided by kinematic viscosity, would
scale as Re?/3 giving much more modest val-
ues. A reasonable comparison could be made
with a driven cavity at Re=1000-10000. The
flow in a real float zone is thus highly chaotic,
even if the Reynolds number is hardly high
enough for engineering turbulence models to
give good results, Kaiser (1998), regardless of
all the well known difficulties with separation
and recirculating flows, let alone wall boundary
conditions or wall corrections for a thermocap-
illary boundary, etc.

In practice there are also other possible
sources for unsteady flow, such as RF-inductive
heating, and buoyancy driven convection when
present, even if the basic thermocapillary
mechanisms discussed above are generally con-
sidered as the most severe. In order to stabilize
the flow, differential rotation of the rods, mag-
netic fields etc, may be applied. Quantitative
simulations must also account for the defor-
mation of the free surface, the evolution of
freezing and melting interfaces, etc. In addi-
tion to those referenced above, Rao and Shyy
(1997), Kaiser and Benz (1998), Ratnieks et.al.
(2000) may be mentioned.

The annular configuration.

Another geometry where the dynamics have
similarities with the half zone is the annular
geometry shown in figure 2a. In this case,
a cylindrical container with a small co-axial
cylindrical heater is used. The fluid is con-
tained in the annular gap between the heater
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and the container wall. A free surface sub-
jected to a radial gradient of temperature is
hence created. Kamotani et al. (1992) were
the first to experimentally study a thermo-
capillary flow in a cylindrical container of the
annular type. This geometry is attractive since
it presents many experimental advantages, and
the dynamics can be expected to be similar
to other axisymmetric thermocapillary convec-
tion cases. More recent microgravity exper-
iments by Kamotani et.al. (1997,1998,2000)
investigated the onset of oscillations in this ge-
ometry using silicone oil with Prandtl number
around 27.

The group of Kamotani and Ostrach have
argued that free surface deformations are an in-
trinsic part of the instability mechanism, both
in the annular geometry and in the half zone
(Masud et.al., 1997), and have proposed a
mechanism for the instability that relies on
the coupling between the thermocapillary heat
transfer and a time dependent surface deforma-
tion. However, this explanation is not without
problems. The first observation is that the
time dependent surface deformations that are
observed during oscillations are very small, in
the order of microns for a typical experiment in
silicone oil, Kamotani et. al. (2000). Further-
more, there have been several reasonable com-
parisons between experiments and stability in
the half zone case that assume an undeformed
free surface, Wanschura et.al. (1995), Neitzel
et.al. (1993), Levenstam et.al. (2001). We
are not aware of any published direct compar-
isons between stability theory and experiments
for the annular geometry execept for Lavalley
(1997) and Lavalley et. al. (2001), which show
good agreement between experiments and sim-
ulation with an undeformed free surface.

Schwabe et. al. (1992) studied experimen-
tally the mode shape as a function of aspect
ratio for very shallow annular containers. They
observed a selection of azimuthal wavenumbers
that was similar to what has been observed
earlier in the half zone case. In very shallow
containers, H/R = 0.013, azimuthal wavenum-
bers as high as 22 were obtained.

An attempt to introduce an active feedback
control has been made by Shiomi et al (2001),
who introduced a local heating of the hori-
zontal surface, based on a temperature mea-
surement taken at a different position. As in
the control experiment by Petrov et.al. (1996),
control is successful in suppressing oscillation
at the sensor location. However to completely
eliminate oscillations, the temperature must be



measured at several locations.

Czochralski growth

In the Czochralski system, see figure 1la,
a melt is kept in a crucible that is typically
inductively heated. The crystal is grown by
cooling it and slowly pulling it upwards, so
that new material solidifies. This process is
widely used in industry for the poduction of
single-crystalline silicon for electronics, where
the size of the crystals have grown dramati-
cally in recent years, to 8” diameter presently.
Some of the issues in this process are the uni-
formity of the crystal, notably oxygen content,
and the presence of crystal defects that may be
related to thermal stresses in the crystal. As
in the float zone, the heat and mass transfer in
the melt is crucial in this regard. In addition
to natural and thermocapillary convection, the
crucible (container) and the crystal are usually
rotated as a means of influencing the mean
flows, which is another important source for
melt motion.

Much work has gone into setting up com-
plete models of this important industrial pro-
cess. In order to be quantitative these need
to include the entire furnace to capture the
radiation heat transfer at these elevated tem-
peratures, as well as the influence of the gas
motion above the melt, etc, see Dornberger
et.al. (1997), Zhou et.al. (1997), and Chat-
terjee et.al. (2000). There are thus many
other complications, in addition to the melt
flow, but still this is often identified as the
main remaining obstacle. The Czochralski sys-
tems are considerably larger than the float-
ing zones discussed above and the melt flow
is typically closer to proper turbulence. Or-
ders of magnitudes of parameters relevant for
the flow, Lipchin and Brown (1999), could be
Grashof numbers = 10!!, and Prandtl number
0.011, indicating that buoyancy alone would be
strong enough to cause a turbulent flow.

Classical turbulence models have been em-
ployed in this context, see for instance Lipchkin
and Brown (1999), who compare systemat-
ically different wall treatments for the k-¢
model.  As they show, the melt flow in
Czochralski growth has many of the features
that are notoriously difficult to treat using k-
€ models; Rather low Reynolds number flows,
natural convection, separation, effects of sys-
tem rotation, etc. Large eddy approaches have
also been tried, Basu et.al. (2000), Evstra-
tov et.al. (2000), even though the resolution
is typically not very high, in view of all the
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additional complications in this problem.

Czochralski processes are also used for grow-
ing crystals from oxide melts, as for instance
YAG (Y3Al50,2) for laser applications. Such
melts typically have a Prandtl number around
10, and are more viscous than say a silicon
melt. The resulting flows may have typical val-
ues of Grashof numbers of the order 10 — 107,
Marangoni numbers in the order 103 —10°, etc,
and are thus not necessarily turbulent, but may
show oscillatory motions and low dimensional
chaos, Jing (2000), Enger et.al. (2000), Xiao
and Derby (1994).

Welding

Gas-Tungsten-arc  (GTA) welding is a
widely used method to join materials in manu-
facturing industries. Nevertheless, the physical
processes involved in GTA-welding are highly
complex and are not fully understood. One
key issue in improving welding technology is
to devise methods suitable for new materials,
and to predict the welding properties of a new
material in detail. This involves for instance
a prediction of the depth and width of the
molten region (the weld pool), the structure
of the material in the junction after the pro-
cess is complete, and also how the properties
of the material influence the choice of the ac-
tual welding parameters, i.e. welding current,
speed, etc. There has recently been a grow-
ing interest in detailed numerical simulations
of weld processes (see the recent conferences
Cerjak and Bhadeshia (1997, 1998), David and
Vitek (1993)).

The molten weld pool develops directly be-
neath the electrode when the current is turned
on and its shape and size is highly influenced
by the heat and fluid flow in the molten zone.
The heat and fluid flow affect the temperature
distribution and thus determine the quality of
the solidified weld fusion zone.

The fluid flow in the weld pool is mainly
driven by forces due to surface tension
gradients (Marangoni convection), but is
also strongly influenced by electromagnetic
forces and buoyancy, Mundra and DebRoy
(1993a,1993b), Oreper and Szekely (1984). Arc
pressure and aerodynamical drag forces arising
from the shielding gas used in GTA welding
to prevent oxidation have an impact on the
welding process. Moreover, heat losses due
to radiation and convection and solidification
of the weld fusion zone as well as the mod-
elling of the heat input from the arc present
between electrode and workpieces have to be



taken into account. The process is also highly
influenced by the presence of surface active el-
ements on the surface of the melt. In recent
research, physicochemical phenomena, such as
adsorption and desorption to the surface, are
considered as important for realistic modelling,
Winkler et.al. (1998, 2000).

Figure 4: Isotherms and flow vectors on the surface and
symmetry plane of a plate during welding.

. Figure 4 shows stationary temperature and
velocity distributions for a 3D GTA-welding
simulation. The electrode is moving with a
constant speed of 0.5m/min in the positive y-
direction, to the left in the figure. The heat
flow from the electrode to the workpiece melts
a specific region of the specimen which forms
what is called the weld pool. Isotherms are
shown on the upper surface of the plate and
on the vertical symmetry plane oriented along
the travelling direction of the electrode. In
these planes also the velocity fields are plot-
ted. The solidification front of the weld pool
where liquid material suddenly changes to solid
is shown as a surface bounding the weldpool
from below. It is observed that the tempera-
ture fields are strongly affected by convection,
with characteristic velocities of 0.1m/s. The
fluid flow in the weld pool is highly complex,
resulting in this case in a total of 6 rotat-
ing vortex motions influencing the weld pool
depth and width. Moreover, the velocity field
at the surface of the specimen determines the
streamlines defining the travelling paths of, for
example, slag particles.

SOLIDIFICATION

One crucial step in almost all materials pro-
cesses is solidification in one form or other.
The conditions under which the melt resolid-
ifies will be crucial for the final microstruc-
ture of the material. The size and morphol-
ogy of the individual grains that make up a
polycrystalline material, the homogeneity of a
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monocrystal, the actual phase that is formed,
as well as its local composition, is determined
by the interplay between local heat and mass
transfer and the thermodynamics of the phase
change. Even though the microstructure of
the material may change considerably during
subsequent cooling and following process steps,
the foundation has been laid at the point of so-
lidification. Since local heat and mass transfer
governs the phase change, it is obvious that any
melt convection at all will be paramount in de-
termining the structure of the material, thus
making this an area of important applications
that should interest fluid mechanists.

Stability of a solidification front, dendrites

A generic example of solidification of a pure
liquid would be the unidirectional solidification
of an undercooled sample initially at a tem-
perature below the freezing point. The sim-
plest mathematical description of this would
assume a planar phase change boundary, with
a constant given freezing temperature at the
solidification interface, and a constant latent
heat release expressed as a discontinuity of the
normal temperature gradient at the interface.
This evokes a picture of the solidification front
as a smooth interface advancing over the do-
main. This however is very much the exception
rather than the rule when dealing with metals
and crystalline materials.

The reason for this is that a planar solidifi-
cation interface advancing into an undercooled
melt is subject to a fingering instability very
similar to fingering in Hele-Shaw cells: if a
bump is formed on the solidification front, the
local temperature gradient ahead of it will
increase, and thus cool the front more effi-
ciently there, causing an amplification of the
disturbance. Furthermore, this mathematical
problem is in fact ill-posed, since the growth
rate of a disturbance of the planar shape of
the interface will grow unboundedly with the
wavenumber of the disturbance. The assump-
tion responsible for this is that the temperature
is assumed constant on the interface - in the
Hele Shaw analogy this would correspond to
a zero surface tension. A more realistic de-
scription of solidification is obtained by rec-
ognizing that the temperature at the interface
depends on the local curvature of the material,
as well as the speed of the front. Also the inter-
face kinetics are highly anisotropic due to the
anisotropic properties of the crystalline solid
that is formed.

In a binary mixture, the interface temper-



ature also depends on the local composition
and it is possible to make a close analogy be-
tween solidification of a pure material and the
approximately isothermal solidification of a su-
persaturated system. The basic instability of a
planar or spherical front was first investigated
by Mullins and Sekerka (1963, 1964), and has
since been studied extensively in different con-
texts, for instance effects of natural and forced
convection in the melt, Davis (1990).

Thus, in most practical situations, solidifica-
tion interfaces undergo a fingering instability.
These often develop into what is called den-
drites (from the greek dendros, tree), see figure
5. In many metals these indeed resemble a
tree with a main stem and sidebranches, where
the apparently anisotropic growth is due to the
anisotropy of the growth kinetics. They may
typically be of the order micrometers up to
fractions of a millimeter in size. Dendrites are
maybe the most common microstructure that
grows naturally during solidification of alloys
and pure metals, see for instance the standard
text by Kurz and Fisher (1992), and Huang
and Glicksman (1981a,1981b), and Glicksman
and Marsh (1993).

In the simulation shown in figure 5
(Tonhardt and Amberg, 1998), the interface
is tracked by a phase-field method, Langer
(1986), Kobayashi (1991), Warren and Boet-
tinger (1995), Karma and Rappel (1996). This
implies that the solid/liquid interface is treated
as a diffuse interface and that this is tracked
by a phase-variable which is governed by a
phase-field equation. The phase-field equation
is derived in a thermodynamically consistent
way by considering the entropy change during
solidification, Wang et.al. (1993), Fried and
Gurtin (1996). This results in that the phase
variable is 0 in the pure solid and 1 in the pure
liquid, while it changes rapidly over the diffuse
interface.

Figure 5: Dendritic growth of a nickel nucleusin a shear flow.
The innermost contour is the liquid/solid interface and the
other contours are isotherms. The inflow and outflow of melt
is from the left to the right.

The simulation started from a small circu-
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lar nucleus that grows into the surrounding
undercooled melt, displaying the characteris-
tic dendritic pattern with a main stem grow-
ing vertically, with secondary arms extending
horizontally from the main stem. Here the ori-
entation of the crystal lattice in the nucleus
was assumed to be such that the growth is pro-
moted in the horizontal and vertical directions.
The interesting feature that has been added
in figure 5 is melt convection. We imagine that
the nucleus is attached to the wall of the mold
or container holding the undercooled melt, and
that there is a melt flow past the wall. In
keeping with the small size of the dendrite,
the background flow is assumed to be a sim-
ple linear shear flow. The lower side of the
domain is an insulated solid wall, the left and
right side are the inflow and outflow bound-
aries for the fluid flow, respectively. The figure
shows that the nucleus has grown into a com-
plicated shape, a dendrite, with three main
branches. Here, the fluid flow has altered the
local heat transfer at the solidification front,
and thus the shape of the dendrite. Due to
the flow the nucleus has evolved to an asym-
metric dendrite that tilts slightly to the left,
upstream. Another effect of the flow is that
the sidebranch growth is promoted (inhibited)
on the upstream (downstream) side of the den-
drite. Material properties have been chosen
to approximately match those of pure Nickel,
with a Prandtl number of around 0.03. A char-
acteristic Peclet number based on the length of
the vertical stem and the background velocity
at this distance from the wall is around 50.
Convective effects on fully developed den-
drites have not been studied using first prin-
ciple simulations until quite recently. The
growth of a dendrite in a shear flow was dis-
cussed above, Tonhardt and Amberg (1998,
2000a), natural convection effects have been
considered by Tonhardt and Amberg (2000b).
The growth of dendrites in uniform forced flow
has been studied by Tong et. al. (2000), Beck-
ermann (1999a) and Diepers et.al. (1999b).
These simulations are all two dimensional, but
a fully three dimensional simulation of den-
dritic growth in a uniform forced flow has been
done by Al-Rawahi and Tryggvason (2000).

Modeling of casting, the mushy zone

As these dendrites continue to grow, they
may after some time occupy a macroscopic
region and can then be treated as a porous
material made up of solid crystals bathed in
residual melt. For instance in a casting, where



a molten alloy is solidified by cooling the walls
of the mould, dendrites usually grow from the
walls into the melt. This effectively porous re-
gion is referred to as a ‘mush’. The speed at
which this mush advances is in principle de-
termined by the conditions at the edge of the
mush, i.e. the local heat and mass transfer at
the tips of the dendrites that constitute the
mush edge, i.e. the interaction between den-
dritic growth and flow that is adressed above.
Another important class of phenomena relate
to the mass transfer inside the mush. Due to
the thermodynamics of phase change, the melt
in the mush is typically enriched in alloying
elements. This induces density gradients and
thus convective flow.

The effects on the final solid of such con-
vective motions (see Huppert, 1990) go by
many different names in materials science. In
the directional casting of single crystal turbine
blades, the fossil traces of a convectinbg plume
in the mush as called a ‘freckle’, and is highly
detrimental, Worster (1992,1997), Amberg and
Homsy (1993).

. In large scale castings the enriched melt in
the mushy region may slowly convect through
the porous mush to the top or the bottom of
the cast, as the case may be, causing accumu-
lation of light element at the top and heavy
at the bottom of the cast. Such macrosegrega-
tions can now be reasonably modelled, also for
complex systems, Schneider and Beckermann
(19952,1995b). In the continuous casting of
steel there are many important phenomena re-
lated to the use of strong magnetic fields to
control the melt flow, Davidson (1999).
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