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ABSTRACT

We present a set of new results obtained
from a field experiment at Rey = 10%. The
emphasis is on the velocity derivatives, both
the (tensor of) spatial derivatives du;/dz; and
the temporal derivatives Ou;/0t. In the former
we address new aspects of geometrical statis-
tics, reduction of nonlinearity, and comparison
of strain dominated regions and regions with
concentrated vorticity. In the latter new re-
sults are presented on measurements without
employing the Taylor hypothesis which allowed
to evaluate the local, a; = 0u/0t, and the con-
vective, a, = (u- V)u, accelerations, and the
relation between a; and a., as well as to assess
the feasibility of direct measurements of the
streamwise derivative 0/0z; without invoking
the Taylor hypothesis.

INTRODUCTION

A field experiment was performed in which
all the three velocity components and all the
nine components of the velocity gradients ten-
sor at Rey = 10* were measured. This was
done by implementation in the field of tech-
niques used by Tsinober et al. (1992, 1997)
in laboratory experiments. Several essential
technological innovations were introduced in
the manufacturing process of the 20 hot-wire
probe in view of specific requirements of a field
experiment. A special high precision calibra-
tion unit was designed and manufactured for
computer controlled three-dimensional calibra-
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tion of the probe. More details on the experi-
ments are given in Kholmyansky and Tsinober
(2000) and Kholmyansky et al. (2000, 2001).
These references along with conventional in-
formation contain results on direct coupling of
large and small scales in terms of statistics of
small scale quantities (e.g. enstrophy) condi-
tioned on large scale quantities (e.g. energy of
velocity fluctuations). This direct coupling is a
manifestation of one of the aspects of nonlocal-
ity of turbulence in physical space (Tsinober,
2000). Another aspect of nonlocality in phys-
ical space is reflected in the nonlocal relation
between vorticity and strain fields and other
quantities associated with vorticity and strain,
such as the relation between the third order
quantities, w;wgs;x and —s;;5;x5ki, where w; -
is the vorticity vector, and s;; - the rate of
strain tensor, Tsinober (1998), Kholmyansky
et al. (2000, 2001).

Another set of results concerns the issues of
geometrical statistics, reduction of nonlinear-
ity, acceleration and Taylor hypothesis. In this
communication we present further results on
these latter issues.

GEOMETRICAL STATISTICS

It is well known that there is a distinct and
strong tendency of alignment between vortic-
ity, w, and the eigenvector, Ay, corresponding
to the intermediate eigenvalue, Ag, of the rate
of strain tensor, s;;, see references in Tsinober
(1998) and Kholmyansky et al. (2001). There
are no such strong tendencies of alignment be-



tween vorticity, w, and other two eigenvectors,
A1 and A3. The eigenvector A; corresponds
to the largest (positive) eigenvalue, Ap, of the
rate of strain tensor, s;;, and the eigenvec-
tor A3 corresponds to the smallest (negative)
eigenvalue, A3, of the rate of strain tensor, s;;
(Al > Ay > Ag)

It has been shown also that there is a strong
tendency of strict alignment between vortic-
ity, w, and the vortex stretching vector W,
W; = wjs;i;, Tsinober et al. (1992, 1997),
Kholmyansky et al. (2001). This alignment
is in conformity with the predominance of vor-
tex stretching over vortex compressing, i.e. the
fact that enstrophy production, w;wjs;j, is a
positively skewed quantity, (w;wjs;;) > 0. In-
deed, since w;wjs;; = w-W, the tendency
of strict alignment between w and W is in
conformity with the positiveness of (w;w;s;;).
However, it appears that the main positive
contribution to (w;wjs;j) comes not from the
term w?Ag cos?(w, A2), associated with the sec-
ond eigenvalue, Ag, of the rate of strain tensor,
in spite of the preferential alignment between
vorticity, w, and the eigenvector, A2, corre-
sponding to the intermediate eigenvalue, Ag,
of the rate of strain tensor, s;;, Tsinober et al.
(1997), Kholmyansky et al. (2001). Namely,
the main positive contribution to (w;w;si;)
comes from the term w?A; cos?(w, A1), associ-
ated with the positive eigenvalue, A1, of the
rate of strain tensor, s;;, though there is no
tendency for alignment between vorticity, w,
and the eigenvector, A, corresponding to the
largest (positive) eigenvalue, A1, of the rate of
strain tensor, s;;. The reasons for such a be-
havior were explained in Kholmyansky et al.
(2000, 2001). Briefly this is associated with
cancellation of positive and negative contribu-
tions in the term w?A;cos?(w,\z2), since A
assumes both positive and negative values (and
is positively skewed) and because A; is much
larger than As.

In view of the above facts it is of interest
to have an idea about the relation between the
alignment of vorticity, w, and the eigenframe,
Ai, of the rate of strain tensor, s;; and of vor-
ticity, w, and the vortex stretching vector W,
W; = wjs;;. This can be done by looking at the
joint PDFs of cos(w, W) and cos(w, A;). These
are shown in Figure 1.

One can see from the Figure 1 that strong
alignment between w and W is associated both
with strong alignment of w and A; (Figure la)
and of w and A\ (Figure 1b).
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Figure 1: Joint PDFs of cos(w, W) and cos(w, \;). a -1 =1,
b-1=2, c-1i=3. The density of the gray scale shows log
of the number of events.

This corresponds to the fact that the
positive contribution to (w;w;s;;) comes both
from the term w?A; cos?(w, A1) and from the
term w?As cos?(w, A2), although the contri-
bution from the former is two up to three
times larger than that from the latter. The
behavior of the joint PDFs shown in Fig-
ure 1 is in agreement with the simple relation
cos(w, W) =Ay cos?(w, A) {AZ cos?(w, )\k)}_l/Q.
It follows from this relation (under some as-
sumptions) that cos(w, W) ~1, if either
cos(w,A\;) ~1 or cos(w,Ay) ~1, whereas



cos(w, W) ~ —1 if cos(w, A3) ~1, Tsinober et
al. (1997).
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Figure 2: Conditional averages of a) W2 /w2, (W; = w;si;)
and b) si;s;kski/(s2), in slots of w and s.

REDUCTION OF NONLINEARITY.
STRAIN AND VORTICITY DOMINATED
REGIONS

Reduction of nonlinearity is understood here
as in Tsinober (1998), Tsinober et al. (1999)
and Kholmyansky et al. (2001). Namely,
all the physically meaningful nonlinearities
appear to be much smaller in the regions
with concentrated vorticity (large enstrophy)
than in the regions dominated by strain.
This is true of such quantities as w;w;sij,
wiw; 85 /w2, $ijSjkSkis SijSikski/s%, W2, (W =
w;8i5), W2/w?, $ijSjkSimSjm, SijSjkSimSjm/S>
and W?/(w?) — {wwjsij/(w?)}2.  All these
quantities appear in the equations for vor-
ticity, w;, enstrophy, w?, total strain, s =
8iSij, etc.! The reduction of nonlinearities
wiw; 855 /w? and W2/ (w?)—{wiw;s;;/(w?)}? was
shown in Kholmyansky et al. (2000, 2001).
Here we show two additional examples in Fig-
ure 2, clearly demonstrating the phenomenon
of reduction of nonlinearity in the above sense.

!The quantity W2/(w?) — {wiw;sij/(w?)}? is the inviscid
rate of change of direction of the vorticity vector. It appears in

the equation for the unit vector of vorticity, ;i = wi/w, i.e. it
is responsible for tilting of vorticity.
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Wiw;Si; —SijS;jkSki w2 w=
w? s2 w2 (Wh)—{wiwjsi; /(w2
w? 0.14 0.11 0.37
s2 0.24 0.28 0.79 0.71

Table 1: Correlation coefficients between nonlinearities ver-
sus enstrophy and strain.

Var(a) Var(a;)
5.3-10% 35.7-103

Var(a.) Corr(a;,ac)
40.6 - 103 —0.932

Table 2: Variance of total, local and convective accelerations
and the correlation coefficient between a; and ac.

This behavior implies that all the above
nonlinearities are expected to be more corre-
lated with strain rather than with vorticity.
This is seen from the examples shown in Ta-
ble 1 and Figure 3.

ACCELERATIONS AND TAYLOR HY-
POTHESIS

In order to tackle the issue of accelerations
and the related problems of validity of Tay-
lor hypothesis and more generally of random
Taylor (or sweeping decorrelation) hypothesis
it was necessary to build a special five array
probe with the central array moved out along
the probe axis, see photo in Figure 4. Such an
arrangement allowed to evaluate directly the
streamwise derivative 0/0z; without invoking
the Taylor hypothesis. This was done by form-
ing a difference between the value obtained at
the ‘sticking’ out array and the average of the
values obtained at the remaining four arrays.
We present here the first tentative results.

These issues take their origin from Taylor
(1935). It was suggested by Tennekes (1975)
that Taylor’s ‘frozen-turbulence’ approxima-
tion should be valid for the analysis of the
consequences of large-scale advection of the
turbulent microstructure, i.e. a/a; < 1 and
aja. < 1, where a; = Ou/0t, a, = (u-V)u,
a=a taga= [ala a = |al[, Ac = Iac|, u is
the total instantaneous velocity vector. This in
turn is possible if there is mutual (statistical)
cancellation between the local acceleration, a;,
and the convective acceleration, a.. Since these
quantities are vectors, the degree of this mu-
tual cancellation should be studied both in
terms of their magnitude and the geometry of
vector alignments.

In terms of magnitude it appears from our
experiments that the variance of the total ac-
celeration is more than six times smaller than
that of the local and the convective compo-
nents, the latter are of the same magnitude.
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Figure 3: Joint PDFs of wwjsij/w? (a, b) and

—(4/3)s458;k5ki /5% (c, d) with w? (a, c) and s? (b, d). The
density of the gray scale shows log of the number of events.

A remarkable result is that the local accelera-
tion, a;, and the convective acceleration, a. are
strongly negatively correlated with the corre-

Figure 4: Microphoto of the tip of the probe with central
array 1 mm ahead of the other ones.

1=1 1=2 1=3
0.853 0.870 0.875

Table 3: Correlation coefficients between the true velocity
derivatives in the streamwise direction Ou;/dz1 and their
counterparts obtained via Taylor hypothesis.

lation coefficient —0.93, see Table 2.

In terms of geometrical relations the local
acceleration, a;, and the convective accelera-
tion, a., have a strong tendency for antialign-
ment. This is seen from Figure 5. The results
shown in Figure 5 and Table 2 are in good
agreement with those obtained in numerical
simulations, Tsinober et al. (2001), and via
3-D particle tracking, Liithi et al. (2001). It is
noteworthy that the results by Tsinober et al.
(2001) and those by Liithi et al. (2001) were
obtained for moderate Rey < 3 - 102, whereas
those given here are at Rey = 10%.

The inset in Figure 5 shows the joint PDF
of the true velocity derivative du;/0z; and its
value obtained via Taylor hypothesis. Such
plots for the two other derivatives dug/0x;,
Ous/0z, look practically the same. The cor-
relation coefficient between the true velocity
derivative Qu;/0z; and its value obtained via
Taylor hypothesis is about 0.85. Similar val-
ues were obtained for the two other derivatives
Ouy/0z1, Ous/dz, see Table 3.

It should be emphasized that the results
presented in this section show that the true
derivative 0/0z; in the streamwise direction is
evaluated quite reasonably. However, higher
quality measurements are needed in order to
make definitive conclusions regarding the va-
lidity of the Taylor hypothesis.
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Relative frequency

0
cos(a;, a)

Figure 5: PDF of the cosine of the angle between a; and
ac (a). Inset (b) - joint PDF between the true Oui/dz1
and the one computed using the Taylor hypothesis. The
density of the gray scale shows log of the number of events.
Isolines correspond to the values 0.1, 0.2, 0.4 and 0.6 of the
maximum value of the logarithm.

CONCLUDING REMARKS

The results given here conform with
and confirm one of the main conclusions
of Tsinober and Kholmyansky (2000) and
Kholmyansky et al. (2001) that the basic
physics of turbulent flow at high Reynolds
number Rey ~ 10 , at least qualitatively, is
the same as at moderate Reynolds numbers,
Rey ~ 102. This appears to be true not only
of such basic processes as enstrophy and strain
production, geometrical statistics, the role of
concentrated vorticity and strain, and reduc-
tion of nonlinearity, but also in respect with
the relation between the local, a; = du/dt and
the convective, a, = (u- V)u, accelerations.
However, in this case there exists a distinct
Reynolds number dependence, at least in the
range of Reynolds numbers 30 < Rey < 3-102,
investigated in Tsinober et al. (2001). Further
work is needed to find out such a dependence
at higher Reynolds numbers.

Our results prove the feasibility of correct
measurements of the streamwise derivatives
without invoking the Taylor hypothesis, thus
enabling to address a number of important is-
sues associated with accelerations and related
matters.
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