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INTRODUCTION

The advent of massively parallel computers
and affordable workstation clusters has stimu-
lated industry interest in applying LES to en-
gineering flows. Resolution of large turbulent
eddies is required in many applications such as
those involving turbulent mixing and aerody-
namic noise. Most of these applications require
computation of turbulence in complex geome-
tries. Unfortunately, in most cases, numerical
methods used for efficient RANS computations
are not appropriate for LES. In contrast to
RANS where the steady or unsteady solutions
are smooth, turbulent flows have broad band
spectra, and most numerical methods used for
robust RANS computations are inaccurate in
the representation of the medium to small re-
solved eddies in LES. For example, the use
of upwind schemes is prevalent in industrial
CFD and it has been demonstrated that the
inherent numerical dissipation of even the high
order upwind schemes can lead to excessive dis-
sipation of the resolved turbulent structures
(Mittal and Moin, 1997). If the purpose of
using LES is to capture the turbulence struc-
tures, which are not available from RANS, then
the numerical methods used in LES should be
sufficiently accurate in representing their dy-
namics, rather than remove them by artificial
dissipation.

With the development of spatial filters that
commute with differentiation, the governing
LES equations are now rigorously derived in
complex domains (Vasilyev et al., 1998; Mars-
den et al., 2000). It is desirable for the LES
filter width to be uncoupled from the compu-
tational grid. That is, grid refinement while
fixing the filter width should lead to the so-
lution of the LES equations instead of the
DNS solution. Recent LES studies of chan-
nel flow with three-dimensional spatial filters
have reaffirmed the conclusions of Piomelli et
al. (1988) regarding consistency of the sub-
grid scale model and the filter. For example, a

filter that removes energy from a broad range
of scales produces better results when used in
conjunction with a scale similarity model in-
stead of the Smagorinsky’s model and a nearly
sharp cut-off filter when used in conjunction
with the Smagorinsky model leads to results
in good agreement with the DNS data (Gull-
brand, 2001).

Over the past decade several advances have
been made in subgrid scale modeling which are
particularly appropriate for LES in complex
geometries. Complex flows usually contain
multiple flow regimes (boundary layers, wall
jets, wakes, etc.) and it has been demonstrated
that models with a fixed coefficient require tun-
ing their coefficients in each flow regime. The
dynamic modeling approach (Germano et al.,
1991; Moin et al., 1991; Ghosal et al., 1995)
does not suffer from this limitation because
the model coefficient is a function of space and
time, and is computed rather than prescribed.
In addition, it has the proper limiting behavior
near walls without ad hoc damping functions
and does behave appropriately in the transition
regions. These are all very important features
for LES in complex domains.

Other significant developments in the sub-
grid scale modeling area are Domaradzki’s sub-
grid scale estimation model, the deconvolution
model of Stolz et al. (2001) and the multi-
scale formulation of Hughes et al. (2001).
Domaradzki and Loh (1999) use extrapolation
from the resolved scales to subgrid scales to
construct the subgrid scale fluctuations and
stresses. The model has an adjustable pa-
rameter which should be possible to compute
dynamically. Stolz’s approach is an algorith-
mic procedure as opposed to phenomenological
modeling, which uses regularized deconvolu-
tion of the velocity field to estimate the un-
filtered flow field. Hughes et al. have shown
that better results are obtained if the govern-
ing equations for LES are split into large scale
and small scale equations and the eddy vis-



cosity model is only applied to the small scale
equations. Although, this approach is triv-
ial to implement in the Fourier space and has
produced excellent results, extension to com-
plex geometry appears to be straightforward
with the variational formulation as proposed
by Hughes et al. (2001).

One of the pacing items for application of
LES to high Reynolds number boundary lay-
ers is the treatment of the wall layer structures.
The subgrid scale models are not designed to
account for the highly deterministic near wall
structures. Therefore, a practical approach for
the treatment of the wall layer has been to
model it all together. Baggett et al. (2001)
have shown that such models should account
for subgrid scale modeling as well as numerical
errors. Wang and Moin (2001) use the RANS
approach in the near wall region (Balaras et al.,
1996), but incorporate a dynamic approach to
adjust the model coefficients. This approach
has produced results in good agreement with
experiments and wall resolved LES of flow over
a trailing edge of a hydrofoil.

Application of LES to industrial problems
requires good subgrid scale models, fast com-
puters, accurate and robust numerical methods
suitable for complex configurations and reliable
experimental data for validation. Of these re-
quired ingredients, development of numerical
methods has received the least attention. Al-
though significant advances have been made
in subgrid scale model development, the mod-
els await to be tested in truly complex het-
erogeneous turbulent flows, so that the need
for improvements and further research can be
identified. Fundamental advances in numerical
algorithms are needed before this testing can
take place and LES can transition to industry.

In this paper I describe two numerical meth-
ods that have been developed at the Center for
Turbulence Research for LES in complex do-
mains. For recent advances in subgrid scale
modeling and filtering the reader is referred
to the references cited above. One approach
is based on the immersed boundary method
where body forces are used to enforce the
boundary conditions and hence account for the
geometry. In the past typical calculations with
the immersed boundary method were done on
a Cartesian mesh, but recently it has been
used effectively in conjunction with curvilin-
ear and unstructured grids. Applications of
this method include the flow in an impeller
stirred tank, flow around a road vehicle with
drag reduction devices and tip clearance flow

in a stator/rotor combination. The second nu-
merical method is designed for unstructured
grids with arbitrary elements. This is a fully
conservative method and is being used for com-
putations in the combustor of a gas turbine jet
engine.

LES WITH THE IMMERSED BOUNDARY
TECHNIQUE

The Immersed Boundary (IB) technique al-
lows the computation of the flow around com-
plex objects without requiring the grid lines
to be aligned with the body surface. The
governing equations are solved on an under-
lying grid (in principle it can be structured
or unstructured) which covers the entire com-
putational domain without the bodies; no-slip
boundary conditions are enforced via source
terms (body forces) in the equations (Verzicco
et al., 2000b).

A boundary body—force term f is added to
the incompressible equations to yield,

%t‘ = —p WP+ V- {o[Va+(Va) ]} +£ (1)
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The effective viscosity v is the sum of the
molecular viscosity and the subgrid—scale vis-
cosity, v¢; this is determined using the dynamic
procedure.

The time—discretized version of Eq. (1) can
be written as,

"t —a" = At(RHS +f) (3)

where At is the computational time step, RH.S
contains the nonlinear, pressure, and viscous
terms, and the superscript denotes the time—
step level.

In order to impose T**! = ¥, on the body,
the forcing f must be,

v, —u"

f=—RHS+ AL (4)
in the flow region where we wish to mimic the
solid body, and zero elsewhere (Fadlun et al.,
2000). In general, the surface of the region
where Tt = ¥, does not coincide with a
coordinate line. The value of f at the node
closest to the surface but outside the solid body
is linearly interpolated between the value that
yields ¥ inside the solid body and the zero in
the interior of the flow domain. This interpo-
lation procedure is consistent with a centered



second-order finite-difference approximation,
and the overall accuracy of the scheme remains
second—order.

To facilitate the application of the IB
method to complex configurations we have de-
veloped a geometry pre-processor. The im-
mersed objects are described using Stereo-
Lithography (STL) format; the STL represen-
tation of a surface is a collection of uncon-
nected triangles of sizes inversely proportional
to the local curvature of the original surface.
The geometrical preprocessor uses the STL
surface description and the three-dimensional
underlying grid to generate all the interpola-
tion data required to enforce the boundary con-
ditions in the IB flow solver. As a first step the
geometrical module performs the separation
(tagging) of the computational cells into dead
(inside the body), alive (outside the body) and
interface (partially inside). This step is based
on a simple ray tracing procedure (O’Rourke,
1998) used in computer graphics to render and
shade three dimensional objects.

An automatic grid-refinement procedure has
been developed to improve the representation
of the body on the underlying grid. In Fig-
ure 1 a circular boundary is immersed on an
underlying unstructured grid (Fig. 1la). The
tagging function T is shown in Fig. 1b for an
initial coarse mesh; the dark area corresponds
to internal cells (T' = —1) whereas the white
area corresponds to fluid cells (7" = 1). The
numerical gradient of this function is shown in
Fig. 1c and its value is proportional to the lo-
cal grid size. By successively halving the cells
until this gradient exceeds a prescribed value
the grid and the corresponding sharper geo-
metrical representation in Fig. 1d is obtained.

To be able to use the geometry pre-
processor, mesh adaptation capability must be
available in the basic underlying CFD code.
Most present LES codes do not have such a ca-
pability. The following examples demonstrate
applications of the IB method in existing struc-
tured LES codes written in cylindrical, Carte-
sian and curvilinear coordinates without zonal
or mesh adaptation capability.

LES of a Stirred Tank Mixer

As an example of the IB method with an un-
derlying mesh in cylindrical coordinates, the
LES/IB solver has been used to investigate
the flow in a cylindrical un-baffled tank stirred
by an impeller located at mid-height of the
tank, rotating at constant velocity Q (Dong et
al., 1994). The impeller has 8 blades equally-

spaced over the azimuthal span (Fig. 2). A
computational grid made up of 192x102x97
nodes (in the vertical, radial and azimuthal di-
rection respectively) has been used. The grid
is uniform in the azimuthal direction and a sec-
tion of it is shown in figure 2.

No slip boundary conditions are imposed on
the impeller, the shaft, the bottom and ex-
ternal surfaces of the tank; a slip boundary
condition is imposed on the upper boundary
of the computational domain. The Reynolds
number based on the rotational speed and the
blade radius (R;) is Re = 1636.

Flow features are presented in figure 3 in
terms of azimuthally averaged velocity vectors,
instantaneous velocity magnitude and turbu-
lent kinetic energy.

Quantitative comparisons between the sim-
ulations and experimental data is reported in
figure 4 in terms of radial profiles of azimuthal,
radial and vertical velocity components. The
present simulations are in very good agreement
with the measurements; in particular the peaks
of the azimuthal and radial velocity close to
the impeller are very well captured. Reynolds—
Averaged Navier—Stokes simulations with the
k-e¢ model were also carried out for the same
configuration (Verzicco et al, 2000a) show-
ing disagreement with the measurements espe-
cially in terms of the radial velocity which is
strongly overpredicted.

The Reynolds number in the configuration
considered is low enough to make LES com-
petitive with RANS simulations in terms of
computational cost; RANS predictions agree
poorly with the measured data because of the
presence of large scale unsteadiness and hetero-
geneous flow (laminar/turbulent). Moreover,
the dynamic model is ideal in this case because
of its adaptability to different flow regimes.

LES of a Road-Vehicle with Drag Reduction
Devices

The Cartesian IB technique has been used
to simulate the flow around a square-back
road—vehicle with drag reduction appendices
attached to its base. The objective is to study
the unsteady dynamics of the wake and the
modifications induced by the drag reduction
devices; experimental data are available for
comparison (Khalighi et al., 2001).

The baseline configuration is shown in figure
5; the simulations are performed on a Carte-
sian grid made up of 220x140x257 points in
the streamwise, vertical and spanwise direc-
tions respectively.



The experimental Reynolds number based
on the free-stream velocity and the model
height (H) is Re = 170, 000.

Time-averaged results are shown in figure 6
for the three configurations analyzed at Re =
20,000. The flow patterns in the near—wake
recirculation region are very different; the re-
sults for the baseline square—back configuration
show a strong interaction between the base
recirculation and the boundary layer on the
bottom wall. The ground separation disap-
pears at Re = 100,000 in accordance with the
experiments.

In figure 7 time—averaged streamwise veloc-
ity profiles are shown at two sections down-
stream of the base for the square-back con-
figuration. The measurements are compared
with two LES simulations performed at Re =
20,000 and Re = 100,000; the high Reynolds
number simulations are in better agreement
with the experiment. The defect velocity as
well as the length of the recirculation region
are accurately captured. The low Reynolds
number simulations agree qualitatively with
the measurements but strongly overpredict the
thickness of the bottom—wall boundary layer.

The high Reynolds number results have also
been compared to the experiments in terms of
drag coefficients; values of 0.291 for the square
back and 0.223 for the boattail were computed
from the LES simulations, as compared to 0.3
and 0.23 respectively from measurements.

This example demonstrates the utility of
the IB method in the design process, where
the effect of small geometrical changes on the
overall performance is desired. The use of a
simple Cartesian mesh allows performing the
simulations very efficiently without the need to
re-generate computational grids for every con-
figurations.

IMMERSED BOUNDARY METHOD IN
CURVILINEAR COORDINATES

A severe challenge to the immersed bound-
ary method for computing high Reynolds num-
ber flows is the near-wall resolution. While
mesh embedding, as discussed in the previous
section, or the use of a wall model (e.g., Wang
and Moin, 2001) offers significant relief, the
resolution requirement can be most efficiently
addressed through grid clustering in the wall
normal direction if one set of grid lines is par-
allel or nearly parallel to the boundary. Hence,
on a Cartesian mesh, the immersed boundary
method works best when the bounding surfaces
are nearly flat (as in the previous example) and

perpendicular to one another, or if the object
is slender.

At moderate to high Reynolds numbers and
in the presence of complex boundary shapes, it
is often advantageous to combine the immersed
boundary technique with a structured curvi-
linear mesh topology. This novel approach is
applied in an ongoing large-eddy simulation of
the tip-clearance flow in a stator-rotor com-
bination (You et al., 2000). A schematic of
the flow configuration is shown in Fig. 8. The
chord Reynolds number is of O(10%). The ro-
tor stage simulation is carried out in a frame of
reference attached to the rotor, with the end-
wall moving at a velocity equal and opposite to
the rotor velocity. The tip-gap region between
the rotor tip and the endwall presents consid-
erable grid topology and resolution challenges.
It has been a major obstacle to the accurate
prediction of this flow.

A commonly used mesh topology for the
tip clearance flow is the body-fitted H-type
mesh. This mesh topology is often extended
to the “embedded H-type mesh” to facilitate
the treatment of the tip-clearance region (e.g.,
Kunz et al., 1993). However, the embedded H-
mesh has significant drawbacks. As shown in
Fig. 9, the blade surface in an z-y plane (see
Fig. 8 for coordinate definition) is mostly rep-
resented by longitudinal grid lines except near
the leading and trailing edges, where it is rep-
resented by the transverse grid lines. The num-
ber of longitudinal grid lines inside the airfoil
is determined by the resolution requirements in
the tip-gap. This causes the convergence of the
longitudinal grid lines in the leading and trail-
ing edge regions, leading to high aspect and
stretching ratios, which can cause difficulties
with non-dissipative numerical schemes. The
extremely small y grid spacing in these regions
imposes severe restrictions on the allowable
time-step size. In addition, the four surface
points where the longitudinal and transverse
grid lines intercept require special treatment,
hence increasing the algorithmic complexity.

On the other hand, the Cartesian mesh im-
mersed boundary method is not appropriate
for this flow either. The rotor blade is quite
slender, and thus would be suitable for im-
mersed boundary treatment if one set of grid
lines could be arranged parallel to the chord.
Such an arrangement, however, would make
it difficult to impose the appropriate bound-
ary conditions in the y-direction, since the flow
is not periodic in the direction normal to the
chord. Rather, it is periodic in a direction



dictated by the blade stagger angle. If the
Cartesian mesh is defined with one set of grid
lines in the direction along the stagger angle,
highly dense resolution will be needed in most
of the computational domain in order to re-
solve the boundary layers on the blade surface,
resulting in large number of grid points.

To overcome the disadvantages of the above
methods, the use of immersed boundary
method on a curvilinear coordinate mesh of-
fers an attractive solution. The emphasis here
is not to save computational cost as in the
Cartesian mesh cases discussed in the previ-
ous sections, but rather, to devise an accurate
and flexible treatment of boundary conditions
in the LES of the tip-clearance flow.

As demonstrated in Fig. 10, the blade sur-
face is nearly parallel to one set of the grid
lines, allowing an adequate resolution of the
boundary layers. Periodic boundary condi-
tions can be applied on the (curved) upper
and lower boundaries. Preliminary simulations
of the 3-d tip-clearance flow show satisfactory
performance of the method, in terms of reso-
lution and numerical stability. LES of the flow
shown in Fig. 8 is currently underway at CTR
(see Fig. 11) .

LES ON UNSTRUCTURES GRIDS

The U.S. Department of Energy’s ASCI pro-
gram has led to an ambitious effort at Stanford
to perform an integrated simulation of a gas-
turbine engine. The compressor and turbine
are to be simulated using RANS while LES is
to be used for the combustor. This includes
the diffuser surrounding the combustion cham-
ber, the injectors, swirlers, dilution holes, etc.,
which is geometrically very complex (Fig. 15).

The effort spent on grid-generation can be
very significant in configurations of this kind;
unstructured grids are very desirable in this
respect, since the time required for generating
unstructured grids is significantly lower than
that for block-structured grids. However the
bulk of CFD experience on unstructured grids
has been in the context of RANS. As pointed
out in the introduction, RANS typically uses
upwinded numerical methods; upwinding pro-
vides numerical dissipation, which makes the
solution-procedure robust. However, when
used for LES, this robustness severely compro-
mises accuracy. One solution to this problem is
to develop non-dissipative numerical schemes
that discretely conserve not only first order
quantities such as momentum, but also second-
order quantities such as kinetic energy. Dis-

crete conservation of kinetic energy ensures ro-
bustness without numerical dissipation. Note
that satisfying one constraint discretely, does
not ensure the other - both constraints have
to be simultaneously enforced when deriving
the algorithm. The Harlow-Welch algorithm
(1965) possesses this property on structured
grids, and has therefore been widely used for
LES on structured grids in simple geometries
(see also Morinishi et al., 1998).

Mahesh et al. (1999, 2000) have developed a
nondissipative, staggered algorithm for turbu-
lent flow on unstructured grids. A novel feature
of their approach is that it discretely conserves
kinetic energy, making it both robust and ac-
curate. Figure 12 shows a schematic of the
positioning of variables. The face-normal com-
ponent of velocity is stored at the faces, while
pressure is stored at the centers of the vol-
umes. A predictor-corrector approach is used
to advance the momentum, continuity and the
scalar equations.

Discrete energy conservation ensures that

the sum:
> v, T (5)

Cvs

has only contributions from the boundary
faces; here cuvs refers to the grid volumes and

U is the non-linear term in the Navier-Stokes
equations. The form of the convection term
is known to affect non-linear stability of the
discrete equations. The rotational form; i.e.,
@ x & — V¢?, and the skew-symmetrical form,
[(uiuy),j+ujus ;]/2 have been quite popular for
this reason. On tetrahedral or triangular grids,
a staggered storage of variables allows an ele-
gant implementation of the rotational formu-
lation. The face-normal velocities determine
the vorticity component along the edges of the
tetrahedra (in 3D), and nodes in (2D). This al-
lows the circulation theorem to be imposed as
a constraint on the algorithm (Mahesh et al.
1999, 2000).

While tetrahedral elements allow complex
geometries to be easily gridded, they are not
the most preferable computational elements for
turbulence simulations - our experience shows
that hexahedral elements are preferable - fewer
hexahedra fill up a volume; hexahedral ele-
ments also generally yield more accurate so-
lutions. The grid may therefore be a combina-
tion of arbitrary computational elements, and
is generated using third-party software. The
grid is partitioned, and then reordered to al-
low for data locality on each processor, and
efficient message-passing between processors.



Figure 17 shows scaling data from a run that
used up to 1000 processors on ASCI Red -
a cluster of 9000 Intel Xeons. Based on the
observed speed-up, a five million node grid is
estimated to use a thousand processors ’effec-
tively’, suggesting that parallel performance is
quite satisfactory. The algorithm has been im-
plemented for parallel platforms, and has been
tested for a variety of canonical incompressible
flows (Mahesh et al. 1999, 2000). The robust-
ness of the algorithm is illustrated in figures
13 and 14 where even in the inviscid limit, or
at very high Reynolds numbers where the dis-
sipative scales are not resolved, the numerical
solution is seen to mimic analytical behavior.
In contrast a non-dissipative scheme that does
not conserve kinetic energy is seen to blow up
after some time at high Reynolds numbers.

This scheme is being used for LES of a gas
turbine combustor. An instantaneous contour
plot of the velocity magnitude in the mid-plane
of a combustor sector is shown in Fig. 16.

CONCLUSIONS

Application of LES to industrial problems
requires accurate and robust numerical algo-
rithms for complex geometry. Validation in
complex flows would also motivate further re-
search and developments of subgrid scale mod-
els which have been tested extensively only in
canonical flows. Two numerical methods for
LES in complex configurations were presented:
a conservative unstructured mesh method used
for simulation of flow and combustion in a gas
turbine combustor, and the immersed bound-
ary method.
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Figure 5: Road-Vehicle Configuration and Computational
Grid in the Symmetry Plane (only one every 4 grid—points
are shown).
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Figure 3: Contour plots of azimuthally averaged velocity
vectors (a), istantaneous velocity magnitude (b) and tur-

bulent kinetic energy (c) in a meridional plane crossing a
blade.
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imposed to contours of time-averaged streamwise veloc-
ity. Re = 20,000 (a) Baseline square-back geometry; (b)

Figure 4: Radial profiles of averaged azimuthal velocity com- Square-back with base plates, (c) Boat-tail base.

ponents in the middle of the tank. Symbols: Experiments
(Dong et al., 1994), Solid Line: Present LES; Dashed Line:
RANS Simulations (Verzicco et al., 2000a)



Streamtraces at the tip-clearance region, ob-

tained using immersed boundary method on a curvilinear

mersed boundary method for tip clearance flow (1/4 lines
mesh.

Figure 10: Curvilinear mesh used in conjunction with im-
plotted).
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Figure 12: Schematic of the positioning of variables.

Figure 9: Example of an embedded H-mesh near the blade

trailing-edge.
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Figure 16: Contour plot of the velocity magnitude in a cross-
section of the combustor.

Figure 13: Illustration of the importance of discretely con-
serving kinetic energy. The kinetic energy is plotted against
time for the Taylor problem at Re = 10°. The energy-
conserving scheme is robust while a non-dissipative scheme
that only conserves momentum blows up after some time.
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Figure 14: Kinetic energy of isotropic turbulence is plotted |
against time at varying Reynolds numbers. The Reynolds "% 4000 | |
number is increased from 102,103,10%,10% and 10° respec- & )
tively. Note that the scheme is robust even at the highest ¥
Reynolds numbers.
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Figure 17: Results of a scaling study on ASCI Red. The two
curves at the bottom left of the figure correspond to grids of
64000 nodes, and 216000 nodes respectively.

Figure 15: A cross-section of the combustor geometry and
the computational grid
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