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ABSTRACT

A direct numerical simulation of transitional and de-
veloped turbulent flow in a three-dimensional spatially
developing subsonic mixing layer is performed. The
streamwise, normal and spanwise momenta are sam-
pled at characteristic locations in the flow. The corre-
sponding correlation time is computed in the turbulent
regime and compared to the averaging time needed to
obtain sufficiently accurate time-averaged flow quanti-
ties. Some resulting probability density functions are
shown and discussed.

INTRODUCTION

We consider direct numerical simulations (DNS) of
a subsonic spatially developing plane turbulent mixing
layer. This flow can be used for a detailed investigation
of the statistical properties in the turbulent regime. In
this paper, we show the feasibility of present-day DNS
for the study of statistical properties of spatially inho-
mogeneous turbulent flows. We first consider the re-
quired averaging time. A statistical analysis can be per-
formed when the time-averaged solution is stationary.
We therefore consider a criterion, based on the corre-
lation time computed from the instantaneous solution,
to derive the order of magnitude of the averaging time
needed for a desired accuracy. This is illustrated with
the time evolution of the averaged momentum and the
momentum thickness.

Data is sampled from the instantaneous momenta in
three directions. Several studies deal with the behaviour
of probability density functions (pdfs) in homogeneous
turbulence [10, 11, 12]. Most of these focus on pdfs of
the velocity difference between two points separated by
a certain distance and velocity derivative distributions.
The focus in this paper is on pdfs of the three momenta
for spatially inhomogeneous flow. The distribution in
the turbulent regime turns out to approach Gaussian
behaviour for the streamwise and spanwise momentum.

In the spatial setting that we employ, the computa-
tional domain is limited through the introduction of ar-
tificial boundaries. For the flow studied here, especially
the outflow boundary requires some attention since no

physical boundary condition is available in case of tur-
bulent flow. A buffer domain is introduced in order to
damp the reflections that may occur in the vicinity of
the numerical outflow boundary. This procedure is com-
bined with characteristic wave relations [7]. In the buffer
domain, the turbulent solution which enters is gradually
forced towards a steady mean flow near the end of the
buffer. The damping function used here is formulated
such that its effect is approximately grid independent
and is found to be robust and with minimal upstream
influence in both mixing- and boundary layer [1, 14].

We next introduce the numerical method and give a
description of the flow. This is followed by the presen-
tation of DNS results which are analysed and discussed.
We focus on a criterion that prescribes the length of
the time-interval needed in order to achieve a certain
accuracy of the time-averaging procedure. We study
the momentum thickness and the resulting growth rate.
Probability density functions will be constructed from
samples of the time evolution of momenta in all three di-
rections. Finally some concluding remarks are collected.

NUMERICAL METHOD AND FLOW SET-
TING

A rectangular computational domain is used. An
efficient spatial discretization which includes a fourth
order finite volume technique suited for both uniform
and stretched grids is employed. The time-integration
uses a second order four-stage Runge-Kutta scheme [13].

The numerical method and boundary conditions are
validated by imposing small perturbations on a base flow
at the inflow boundary and comparing the results with
Linear Stability Theory (LST) [1, 15]. The perturba-
tions are composed of eigenfunctions corresponding to
LST which provide a time dependent forcing of the flow
at the inflow boundary. We observe a good agreement
between the DNS and LST results, in particular if the
resolution in the normal direction is adequate. Further-
more, it could be inferred that the upstream influence
of the buffer domain is very small [1, 14].

In this paper we consider a mixing layer flow with a
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Reynolds number of 200 and a Mach number of 0.8. The
Reynolds number is based on the upper free-stream ve-
locity, density and viscosity and half the vorticity thick-
ness of the mean flow at the inflow while the Mach num-
ber is given by the ratio of the upper free stream veloc-
ity and speed of sound. We take a uniform grid in all
directions. Considering previous results [14], we take
a resolution of 25 points per perturbation wavelength
of the most unstable LST mode in the streamwise and
128 points in the normal direction respectively. Fur-
thermore, we take 16 points in the spanwise direction
which extends half a spanwise wavelength using span-
wise symmetry as described in [9]. This reduces the
computer time and storage requirements by a factor of
two.

In order to be able to reach transition to turbu-
lence we use a streamwise extent of the computational
domain of 18 perturbation wavelengths, of which the
buffer length consists of two wave lengths. We observed
no transition when only the most unstable fundamental
2D and 3D modes were used at the inflow, which shows
the importance of the subharmonic modes. The pairing
process was initiated after the inclusion of subharmonic
modes. For transition to turbulence additional 3D
modes were added. More details on the stages in the
construction of this DNS can be found in [2]. In total
the combination of the dominant 2D and 3D modes with
their subharmonics at sufficient amplitude gives both a
relatively simple and efficient inflow perturbation which
is suitable for our purposes. The total amplitude of the
perturbations imposed at the inflow is 0.2.

DNS RESULTS

In Figure 1 the spanwise vorticity is shown in a char-
acteristic plane perpendicular to the spanwise direction
at time 552. We can readily distinguish the different
stages from laminar through transitional and turbulent
flow. The time can be expressed in terms of the time
needed for a signal to cross the streamwise domain, Tt,.
This ‘traversal’ time scale is related to the average of
the free stream velocities, and the length of the compu-
tational box. The time Tp = 552 equals about 1.5 T,
and from an investigation of the solution history at sev-
eral characteristic locations in the flow it turned out
to be a suitable starting moment of the time-averaging
process. At this time the main initial transients have
disappeared and a well developed time-dependent solu-
tion is obtained. Variations in the numerical parameters
show the robustness of the physical predictions and jus-
tify the focus on the results arising from the DNS using
LST perturbations [2, 3].

In order to perform a statistical study of the data,
the streamwise momentum at nine different locations
is sampled from t = Ty. We have chosen three sta-
tions in the streamwise direction, indicated by A, B
and C respectively. As can be seen in Figure 1, the
three streamwise locations are chosen in the laminar,
transitional and turbulent regime respectively. For each
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location, we sample at three positions in the normal
direction, located symmetrically around the centerline,
and denoted by the subscripts {(ower), c(enterline) and

u(pper).

TIME-AVERAGING

First, we study the length of the time interval needed
for an accurate time-averaged solution. In numerical
calculations as well as in physical experiments it is only
possible to sample the solution over a finite time inter-
val. The question is how long this time interval should
be in order to achieve a certain accuracy, i.e. when can
a finite-time average at any fixed location in the flow

1 To+T
dr = = / u(t)dt
T T

accurately approximate a statistical average. Here, we
assume that the system is ergodic, so that the statistical
average U equals the time average in the limit of infinite
averaging time, i.e.

1 [To+T
7= lim —/ u(t)dt.

Tooo T T,

We start the averaging at To = 552 since then the ini-

tialization transients have disappeared. Moreover, we

checked that the results for higher values of Ty are prac-

tically indistinguishable. Following [5] the relation be-

tween u and 4r is given by

2 Teor buu(o)

—_— 1
- M

where an overbar denotes a statistical average and

buu(7) represents the Eulerian correlation function:

lar — a2 ~

buu(T) = (u(t +71)— E) (u(t) - a)).

Furthermore Tcor is the Eulerian correlation time de-
fined as

1 0o
Tcor = ————buu(o) /0 buu(T)dT. (2)

In the results for the correlation function and correla-
tion time we will show, we calculate the statistical av-
erages by time averaging over the largest time interval
available. Since these results are only used to get a
crude estimate of the error in the time-averaged quanti-
ties this approximation appears allowed. For a reliable
determination of the long time average u, it is necessary
to perform time-averaging over a period 7" much larger
than the correlation time Tcor. We may use relation (1)
to estimate the necessary averaging time T in terms of
units Teor and a desired level of accuracy for |y — 7>

In Figure 2 we plotted the correlation functions
buu(T) based on the streamwise momentum obtained
from the time interval [1.5 T%,,9 T%,]) for the three lo-
cations of station C. The correlation functions display
the characteristic behaviour of a fast decay to zero fol-
lowed by oscillations. Due to these oscillations the cor-
relation time defined by (2) is hard to calculate. In



practice the correlation time is often calculated by inte-
grating the correlation function until its first root. This
results in T,or =~ 6 for the lower and ~ 7 for the center-
line and upper location. The correlation time appears
to vary somewhat in the turbulent regime. Using re-
lation (1) we estimate that the averaging time should
be about 1000 time units for an absolute error in u of
1% (implying |ir —@|? = 1-10‘4) and about 4000 time
units for an error of 0.5%.

In order to check the approximation of the aver-
aging time derived above, we plot the time-averaged
streamwise momentum 4r as a function of the aver-
aging time T in Figure 3 for the centerline location in
the turbulent regime. This average corresponds to the
instantaneous signal part of which is shown in Figure 4.
We note the long term oscillation that is present in
Figure 3 as a result of the incorporation of modes with
nearly the same frequencies at the inflow. It can be
inferred that after about 1000 time units (=~ 2.5 Ti,)
the deviation is within 1%. Finally, we mention that
the general decrease of 4r — W behaves as the square
root of T corresponding to the behaviour predicted by
relation (1). After this focus on the time-averaging
process, we continue with a study of the momentum
thickness based on the averaged solution. The proba-
bility density functions for the instantaneous momenta
in all directions are computed and some characteristic
features will be considered.

MOMENTUM THICKNESS

The momentum thickness € is an integral variable
based on the averaged solution [8]. The momentum
thickness appears in good approximation to be a linear
function of the streamwise coordinate in a large part of
the domain. This makes it a suitable variable in the
study of similarity of the flow in the turbulent regime
where it can be used for the scaling of the normal coordi-
nate in order to study e.g. the time-averaged Reynolds
stress [2].

For the approximation of the growth rate
a = df/dxz, we use the method of least squares fit in the
appropriate part of the domain. Other alternatives are
available and give rise to the same conclusions. The es-
timate of o depends slightly on the location and length
of the streamwise domain used for its determination,
as well as on the length of the time interval used for
computation of the average solution. However, with
suitably long time integration an accurate estimate can
be obtained as above.

In Figure 5 the momentum thickness, averaged over
about 7.5 Tir and the spanwise direction, is plotted as
a function of the streamwise coordinate. The computed
thickness can be compared with the thickness of the
laminar field which is proportional to the square root
of the streamwise coordinate. Because the solution is
damped to the laminar solution at the end of the buffer,
it is clear that both lines coincide near the inflow as well
as the outflow boundary. The results presented do not

change significantly when the averaging is started at a
later moment in time e.g. 2 T3, instead of 1.5 Tir. In-
terpreting the data from Figure 5, the resulting growth
rate equals 0.0138. From [4], for incompressible shear
layers with equal freestream densities, the momentum
thickness growth rate was found to be in the range
[0.010,0.019]. The value computed here falls well in this
range.

PROBABILITY DENSITY FUNCTIONS

The solution is recorded for 7.5 7%, resulting in
about 21500 data points for each location. As an il-
lustration, in Figure 4, part of the history in time is
shown for the streamwise momentum at the centerline
of station C in the turbulent regime. From this kind
of data the probability density functions (pdf) are plot-
ted in Figure 6. For each pdf the value-range is divided
into 12 equally long intervals. This number was found
appropriate for the generation of the pdfs. The shape
of the pdf at the upstream location reflects the grad-
ual change of the inflow distribution into a turbulent
distribution. For all three locations in the turbulent
regime (Figure 6¢) the pdfs are quite close to a Gaussian
distribution at the same mean and standard deviation.
In addition, the pdfs at locations C; and C, display a
characteristic asymmetry. The pdf of the velocity fluc-
tuations in homogeneous turbulence is often assumed
to be Gaussian. Experimental results show this and
differences are usually attributed to experimental un-
certainty [10]. The deviations from a Gaussian distri-
bution can be quantified by considering the so-called
skewness and flatness [5]. These quantities, including
the standard deviation, are shown in Table 1 for the
three momenta at the three locations in the turbulent
regime. The values for the streamwise momentum skew-
ness illustrate the asymmetry mentioned above and the
flatness values are close to 3.0, the equivalent for a ran-
dom variable with Gaussian distribution.

The pdfs for the normal and spanwise momentum
in the turbulent regime are shown in Figure 7. The
normal momentum pdf in Figure 7a displays an equiv-
alent but stronger skewness on both sides of the center
line compared to the streamwise momentum pdf in Fig-
ure 6¢c. This is illustrated quantitatively in Table 1.
The mean values are about 8.7 1073,1.8 10~ and
—5.8 1072 for the low speed, centerline and high speed
side respectively. This decrease of the normal momen-
tum when moving upwards corresponds with the fact
that fluid from the far field is moving towards the ker-
nel of the mixing layer. Comparison with the spanwise
momentum pdf in Figure 7c and Table 1 reveals a larger
standard deviation for the normal momentum. In con-
trast to both the streamwise and normal momenta, the
spanwise momentum distribution is about similar at all
three locations. It appears almost symmetric around
zero with the smallest standard deviation at the high
velocity side. This is explained by the fact that the
mixing layer is bending down slightly to the low-speed
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side [6] resulting in a high-speed side containing less
turbulence. Furthermore the spanwise momentum pdf
is close to a Gaussian distribution. Finally, we mention
that the values presented in Table 1 and the pdfs in Fig-
ures 6 and 7 are based on the same data. Comparison
with data from a shorter time interval reveals that the
values of Table 1 have converged.

CONCLUSION

We have described DNS results of a turbulent mix-
ing layer. A statistically stationary state was reached
and sampled. The correlation time was computed and
related to the length of the time interval in the time-
averaging in order to achieve a certain accuracy. This
was illustrated with the convergence of the stream-
wise averaged momentum. Furthermore the momentum
thickness displayed a linear growth in the streamwise
direction. An extensive study of the distribution of the
velocities at several locations was performed. The pdf
approached the Gaussian distribution for the stream-
wise and spanwise momenta at the turbulent location
far downstream. The results encourage the applica-
tion of the numerical method to Large-Eddy simulations
and analysis of terms arising in the Reynolds-averaged
Navier-Stokes equations which will be considered in the
nearby future.
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o (-0.01) s 6
pur | pus | pus || pur | puz | pus || pus | pus | pus
u(upper) || 6.8 | 7.4 | 6.6 || -0.54 | 0.64 | -0.30 || 3.0 | 3.0 | 3.3
c(enterline) || 7.0 | 82 | 7.6 || -0.11 | 0.049 | 023 || 2.7 | 3.3 | 2.7
1(ower) 65 | 75 | 7.1 || 031049 | 011 29 | 29 | 3.0

Table 1: Standard deviation (o), skewness (s) and flatness (6) of the pdfs (plotted in Figures 6¢c and 7

respectively) for the three locations at the turbulent station C.
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Figure 1: Contourplot of the spanwise vorticity in a spanwise plane.
consists of 16 perturbation wavelengths of the linearly dominant 2D mode in the physical domain

and 2 perturbation wavelengths in the buffer.
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Figure 2: Normalized correlation functions of
pus at station C (turbulent regime).
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Figure 3: Averaged streamwise momentum at
location C..
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Figure 5: Momentum thickness as a function
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Figure 6: Probability density functions of the streamwise momentum. The corresponding Gaussian distri-
butions are included as well (dashed) at station C.
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Figure 7: Probability density functions of the normal and spanwise momenta at the 3 locations of station C.
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