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ABSTRACT

The paper examines the computational modelling of the stably
stratified atmosphere in the case of gravity wave breaking which
induces turbulence generation and its transport in the whole
atmosphere. The two first-order models developed for stably
stratified flows by Abart and Sini, 1997 and validated on the
LES of Kaltenbach et al., 1994 (stably stratified and shear flow)
are applied to the simulation of the Boulder storm, 1972. In the
atmosphere, the Reynolds number may be very high. An
extansion of the standard e equation to these high Reynolds
number allows to simulate the unsteady behaviour of the storm.
The first-order models adapted to the stably stratified flows
achieves well in the simulation of the generation, transport and
diffusion of the turbulent kinetic energy k in the atmosphere
contrary to the standard k-€ model and the k-L model where L is

an integral length scale used to prescribe the dissipation rate €.

1. INTRODUCTION
The effect of stable stratification (density decrease with height
at faster rate than the adiabatic one) is of major importance in
geophysical flows. The density decrease (increase of potential
temperature with height) frequently diminishes turbulence
which becomes more anisotropic and can strongly reduce the
effective vertical diffusivity. Those stratification effects are due
to some exchanges between turbulent kinetic energy (k) and
potential energy:
o 2 O
POt="8, 90z
by means of the thermal vertical flux (w'6").
A k-¢-Ri, and a 5-equation first-order closure models adapted
for stratified flows were proposed in Abart and Sini, 1997. The
k-e-Ri, model is a simple extension of the standard k-€ model
introducing the turbulence Richardson number in order to take
into account turbulence anisotropy caused by weak stratification
(thermal turbulent diffusion is neglected). The 5-equation
model, noted 5GL, is issued from second-order closures
(Gibson and Launder, 1978, noted GL). The equations to solve
are the ones for the turbulent kinetic energy (k), its dissipation

M

rate (€), the vertical turbulent kinetic energy (w'2 ), the vertical

thermal flux (w'6') and temperature variance ((-)'2 ). The
standard € equation is not adapted to the atmospheric flows
because it focusses on low to moderate Reynolds number (10 to
10%). In the atmosphere, the Reynolds number can reach 10%. An
original extension of the € equation based on the modelling of

the tranfert time scale is proposed here: this extension is local
and in agreement with the standard model.

The models are presented supposing the incompressibility.
They are extended to the anelastic compressibility in order to
apply them to the atmosphere.

On January 1972, the eastern slope of the Rocky Mountains
experienced a severe Chinook windstorm due to gravity waves
induced by stable stratification (Lilly, 1978). The simulation of
this storm is achieved by our models and the standard models in
order to simulate its unstationarity and turbulence. The
comparison of the experimental dataset and the results of
simulations to discuss the dissipation rate formulation and the
hierarchy of the turbulence models in terms of the turbulence
emergence and diffusion in the atmosphere.

2. k-e-Riy MODEL

This first model, extension of the standard k-& model, is based
on a turbulence anisotropy parameterization for free shear part
of turbulent normal stresses (-2/3k in standard k-€ model) in
terms of the horizontal turbulence Richardson number Ri ; (2).

2.1. Free Shear Part

An experimental correlation based on free shear grid
turbulence decay affected by constant temperature gradient
(Yoon and Warhaft, 1989's experiments) is built to provide a
relation between the vertical turbulent Froude number Fr and

the horizontal turbulent Richardson number Ri ;:
—2-0.5
Fr,=w' NL,

Ri, =(NLu)z/u7

where N is the Briint Viisild frequency N?= (g/eo)ae/az-,
—15
L,= u? Az the horizontal turbulence lengthscale and ¢ and

n are some simple functions of Ri ;.

In the experiments, Ri, range from 0.0 to 70.0. Four zones
can be approximately identified (fig. 1):
e turbulence isotropy for Ri, < 0.1(«passive» flow).

Fr, =cRi;" with ?2)

e anisotropy increasing for 0.1<Ri <10.
e return to isotropy for LO<Ri, <300 .
e oscillations for Ri, higher than 30.0; but, because of the

too high complexity of oscillatory wave phenomenon at this
closure level, these oscillations are not taken into account in
the k-e-Ri model and turbulence isotropy is imposed

(u} g =2/3Kk).
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Fig. 1:
Ri, function of Fr, for experiments and correlation (2).

. . . 22 .2
By using evident relation w'"/u'" =Ri Fr, based on
number definition (2), the anisotropic parameterization is
obtained:
wes/u? = R
u'?ks = v"2gs (assuming horizontal isotropy) (3)
2k=u? +v?+w? =20k + wls

In fact, system (3) is a simple anisotropic modelling for the
first oscillatory wave (represented by the three first zones) of
the kinetic/potential energy exchange phenomenon. So, thermal

2

stratification has a direct influence on u'i .

2.2. Shear Part
Supposing cross derivatives preponderance, homogeneity

hypothesis applied on u'w' second-order GL's transport
equation gives:

J— k|2 oW —3dU
u'w'=-3/2 Cu_ —+w — Cu =0.09 (4)
€ ox oz
Generalization of (4) for shear part, u'; u' ig’ is adopted:
s 3 .k 1
uiujs =5Cp€(l)ij—gpkk8ij) (5)

In practice, supposing cross derivatives preponderance, the
expression (5) reduces to (no sum on i and j (*)):

S,
u,—

—dU. —= U
s 2
wiu, =-3/2C —fu] — —ut kg (6)
is i i T ij

€ ox, ox. € ox
j k
As anisotropy of u'? normal stresses due to stratification is

taken into account by means of (3), we see that equation (6)
sensibilize all the Reynolds stresses to stratification. Reminding

that, in the standard k-& model, u)j u'jS =—C, kz/e 25;; where

Sij is the strain rate tensor, the major improvement of this
formulation is that it limits the over-estimation of turbulent
kinetic energy production by shear in stably stratified flows.

* The indice notation is not strictly correct because of the
simplifications or the privileged vertical direction. The indices i
and j do not have to be summed.
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by stratification (equation (3))
imposes reduction of u'w' and so of shear production.

Using (6), supposing weak anisotropy, the anisotropic
turbulent viscosity is (no sum on i and j (¥)):

. 2
Indeed, reduction of w

) )

Vnij =

2.3. Heat Fluxes

The modelling for vertical heat flux results from w'? GL's
transport equation using Rodi, 1985's type of hypotheses
(applied on convection, diffusion and shear production terms).

Then, w'6' depends on vertical turbulence anisotropy:
(c,-1) e/k(w'z —2/3k)

w'Z/k—2+4/3C3
The equation (8) allows an estimation of the turbulent Prandtl
number Pr, to calculate the horizontal heat fluxes by means of

usual gradient formulation with the anisotropic turbulent
viscosity (7) (i=1 or 2(*)):
_Vr33 90
w'' 9z
)
Pr, ox,

g/8) WO'= ®)

Pr, =
®

2.4. k and £ equations
The k equation is the standard one:

%:P,(+G,(—.9+Difk 10)
where Py, G, and Dif are respectively the shear production,
the buoyancy production and the diffusion terms.

Let us recall that the standard model of the € equation is
issued from the first order Taylor expansion of the transfer time
scale in function of the production time scale k/P, and the

turbulence time scale k/€. For the stratified flows, the
standard € equation is:
De € e
oo C“E(Pk +CE3Gk)—C€2—k-+D1fg an
where C.3 = 0.2 (Rodi, 1985).

At infinite Reynolds number, the limit ratio of the transfer
time scale to the turbulence time scale is zero. The dissipation
rate instantaneously adjusts itself to the k modifications. The k
and € equations are in equilibrium. Assuming that the transfer

time scale is proportional to k/(P, +G,—¢€) and to the

turbulence Reynolds number Re; = k?/(ve) at high Reynolds

number, the sum of the model for moderate Reynolds number
and the model for high Reynolds number provides the &
transport equation:

De € e
o C,, ;(Pk +C3Gy)-Ce, P Dif,
(12)

+C54§(Pk +Gy —€)Re "2

The coefficients are supposed to be constant (Table 1) and are
determined like in the standard model with the grid generated
turbulence decrease requirements- the slope n is -2.0 for
Rer =1 and -1.1 for Rer =100 (Comte-Bellot and Corrsin,
1966)- and the neutral constant flux layer requirements. So, this

model for high Reynolds number and the standard model for
moderate Reynolds number are linked up. Let us note that the



high Reynolds € equation model is the standard one with some
coefficients which are functions of Rer.

models: C Oy (o] C C C

£l £2 24

standard 0.09 [1.0 |13 144 [1.92 [0.00

high Reynolds | 0.09 | 1.0 1.3 1.04 |1.45 }]0.05
number

Table 1: Coefficients of the standard and high Reynolds number
€ equation models.

3. THE FIVE EQUATION MODEL

Anisotropisation by stratification is due to kinetic/potential
energy exchanges by means of vertical heat flux. That is why we
built a five equation model based on the explicit resolution of

the three further transport equation for w2, W' and 6'2 . The
basis second-order model for thermal flows (GL) provides these
transport equation.

The other unknown Reynolds stresses are estimated by (no
sum on i and j (*)):

e ) k(= au; — aU;
uiuj=(k—l/sz)Sq—3/2Cu;[ui2—ax—:+u?—]
(13)

T oax ;
+3/2C, %[u—z_%—g +F%]Sij

Equation (13), with the same shear part that of the k-e-Ri,
model (6), allows the vanishing into two component turbulence
(extinction of w'2, w' and u'w').

The k and € transport equations are the same as used in the k-
€-Ri, model, i.e. equations (10) and (12).

4. ANELASTIC COMPRESSIBILITY
The Boussinesq approximation is applied on the Navier-

Stokes equations. The reference density, noted p,, is the

density of a hydrostatic and adiabatic atmosphere. The
continuity equation is reduced to its anelastic form,

B(p,ui)/ dx; =0. The diagnostic and prognostic equations of

the turbulence correlations presented in the previous paragraphs
are built supposing the incompressibility, i.e. du; /dx; =0.

These equations are written in the anelastic approximation
introducing p, in the time and space derivatives. The reference

density acts as a stretching function on the turbulence structure.

5. THE BOULDER STORM
5.1 Description and experimental analysis

On January 1972, the eastern slope of the Rocky Mountains
of northern Colorado and Southern Wyoming experienced a
severe Chinook windstorm. Wind speeds of around 50 m/s are
recorded in populated areas of Boulder. Beside stationary
vertical temperature and wind soundings at Gran Jonction,
300km west (upstream) of Boulder, the windstorm was
unstationary with the formation of two high wind speed core on
the mountain lee side. The two surges were of roughly the same
intensity and time spaced out of two hours. This storm was
generated by the breaking gravity waves appearing because of
the positive temperature vertical profile.

The experimental dataset is issued from two instrumented
aircraft flights: the first at 9000m during the first part of the
storm and the second at 6000m during the second part of the
storm (Lilly, 1978). This dataset was analyzed with the
assumption that the flow is two-dimensional and steady. Figure
2 shows the time averaged horizontal velocity and Table 2
shows the estimation of the perturbation kinetic energy with
respect to the time averaged velocity components at 6000m.

5.2 Geometry and computation conditions

The atmospheric code SUBMESO is used to simulate the
Boulder storm. This model allows to simulate the dynamical,
chemical and micro-physical processes of the meso and sub-
meso scales of the atmosphere. This atmospheric code is issued
from the ARPS code of CAPS (Xue et al., 1995).

The geometry - a simplified bell shape mountain of 2000m
height and of 10000m half width-, the initial and upstream
boundary wind speed and temperature - the Gran Jonction
soundings- in previous simulations are selected in our
simulation (Klemp and Lilly, 1978; Durran and Klemp, 1983;
Bougeault and Lacarrere, 1989; Thunis, 1998). The simulation
domain horizontal and vertical lengths are respectively 120km
and 18km; the discretization of the domain is made by 73X 43
points like in the previous simulations. The time step is 0.5s
instead of 30s in the previous simulations because we do not
use artificial viscosities.

Indeed, in this strongly advective simulation, the numerical
method used to stabilize the advective terms is highly
determining. In all the simulations cited above, some high
artificial viscosities are imposed to avoid the numerical
oscillations. This method leads to the reduction of the gravity
wave and the slowing down of the time evolution of the
windstorm. To add, the inflow and outflow absorbing layers on
the potential temperature and the velocity components are
avoided. Indeed, as they drastically diffused the outgoing wind
vortices, the first high wind speed core does not go out of the
domain and the windstorm becomes stationary. On this flow,
the code SUBMESO is numerically stable beside the intense
time and space perturbations of the fields of potential
temperature and velocity.

5.3 Comparison with the experimental dataset

At the opposite of the previous simulations, our numerical
solutions are unstationary because there are no artificial
viscosities. The Figure 2 illustrates this behavior for the high
Reynolds number k-&€ model. In order to compare the numerical
results with the experimental dataset, a time average operator is
used, the definition of which is:

<d(t) >= an d(t)dt (14)

where @ is a Reynolds averaged field. The time t, is the
beginning of the windstorm; it is chosen at the beginning of the
descent of stratospheric air (t;, = 1h30 of numerical integration

time). The time t, is chosen after that two surges has passed

over Boulder (t; = 6h of numerical integration time) for the
simulation with the turbulence model SGL.

The Figure 3 shows the time averaged solution of the
horizontal velocity < U(t) > issued from the analysis of Lilly,
1972. This solution is analytically obtained with the
measurements and the mass conservation equation. The primary
stratospheric wave was measured by the aircrafts and the high
wind speed core was deduced by mass conservation. The Figure
4 shows the time averaged horizontal velocity provided by the
k-¢ and k-e-Ri, turbulence models with the high Reynolds
number € equation and the k-L model (Bougeault and Lacarrere,
1989) where L is a vertical integral lenght scale. This lenght
scale is a function of the perturbation of potential temperature
with respect to the reference potential temperature.

The result provided by the SGL model is very closed to the k-
€-Ri, model (not shown). The primary stratosperic wave is well
simulated by all the models except by the k-L model because of
the dissipation rate algebraical modelling (see 5.4). The
measured average minimum value of < U(t) > is closed to -
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3m/s. This minimum is overestimated by the k-¢ model (-
12.2m/s) because this model overestimates the variations of
turbulent kinetic energy in the breaking zone. Indeed, the
vertical heat flux is oversetimated by the standard model of
W; so, k is overepredicted in the instable zones and
underpredicted in the stable zones. The k-¢-Ri, model provides
-3.75m/s because k is transported in the stable zones (see 5.5)
and consequently, its variations are lower than with the k-&
model.

The Table 2 shows the time averaged kinetic energy of the
velocity  perturbations, ie. the velocity  variance

1/2<U,()-<U,()>>* at the vertical of Boulder

(x=50km and z=6km) for the experiment and the
numerical simulations. The experimental value is issued from
the space energy spectrum computed with the data of a 30min
horizontal flight at 6km during the second part of the storm
(movements of the high wind speed cores in the surface layer).
This perturbation kinetic energy PTK is obtained by the
integration of the space energy spectrum for the length scales
higher than lkm. This variance is the atmospheric kinetic
energy turbulence. The variance is very underestimated with the
k-L model because after the descent of the stratosperic air, the
flow restratifies (behavior in agreement with Thunis, 1999). The
PTK is overestimated by the k-¢ model because of the
overestimation of the turbulent kinetic energy variations. The k-
€-Ri, model and the 5GL model shows a quite good agreement
with the measurements.

5.4 Discussion on the high Reynolds number
formulation

The Figure 5 shows the horizontal velocity U(t) when the two
high wind speed cores moves on the ground (t=5h) for the
standard k-& model, the high Reynolds number k-¢ model and
the k-L model. For the high Reynolds k-€ model, the two cores
are simulated. Fot the standard k-€ model, the overestimation of
€ with respect to k limits the transport of k and consequently,
limits the movements of the primary stratospheric wave which
initializes the displacement of the first high wind speed core in
the surface layer. The k-L model follows the same type of
behaviour except in the breaking zone where the turbulent
kinetic energy is very high (Figure 6d). In fact, the turbulence
lenght scale provided by the k-L model is much higher than the
turbulence lenght scale k/e of the k-& type models. The mixing
of the flow by the turbulence limits the development of the first
high wind speed core. We point out that the use of an integral
lenght scale forces the turbulence lenght scale to be closed to
the average velocity and potential temperature time scales. So,
the flow is less unsteady and an important part of the velocity
perturbations are integrated in the turbulent kinetic energy. This
is evidently not the case when a local € transport equation is
selected.

5.5 Discussion on the turbulence models

The Figure 6 shows the turbulent kinetic energy when the
primary stratospheric wave is fully developed (t=3h) for all the
models. At this time, the stratospheric turbulence is issued from
the wave breaking at the vertical of Boulder (x=50km). The
turbulence reports received during the storm from various
civilian and military aircraft over central Colorado revealed that
the turbulent kinetic energy was diffused and transported up to
Denver (x=70km) in the surface layer and in the stratosphere.
For the high Reynolds number k-& model, the turbulent zone is
limited to the breaking zone; k is less transported in the
stratified zones than with the high Reynolds number k-&-Ri,
model because of the modelling of the vertical heat flux which
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participates to the destruction of k in the stable zones. Indeed,
for the high Reynolds number k-g-Ri, model, the vertical heat
flux is zero at high stratification because the turbulence

becomes isotropic (equation (8)). The decrease of w0 allows
the transport of k in the stable zones after the primary
stratospheric wave ( x > 60km ). The k production and transport
is qualitatively predicted by the SGL model and in agreement
with the observed turbulence (Figure 3): k is produced in the
second part of the stratospheric wave (positive vertical velocity
part at x=50km), in the high wind speed core
(x = 50km , z = 2000m ) and in the instable zone in the surface
layer (x = 70km ,z = 2000m ). Then, k is transported to the
stable zones.

5. CONCLUSIONS

The following conclusions can be drawn from this
qualification for the stable stratified atmosphere of the first-
order closures presented here:

o the k-e-Ri model, extension of standard k-¢ one, is better in
transporting k in the stable layers than this latter.

e beside its complexity, the five equation models is
numerically stable if the realizability conditions are
explicitely imposed after each time step; this model
achieves well in representing the turbulent kinetic energy.
This model can be used for preliminary studies on the
aircraft routes in such gravity wave storms (let us note the
layer with the minimum of turbulence at
z = 4000 —5000m on the Figure 6c¢).

e the numerical diffusion has to be avoided in the numerical
code in order to simulate the unstationarity of the
atmospheric flows.

e the high Reynolds number € equation modelling allows to
take into account the simultaneous k and € equilibrium at
infinite Reynolds number and allows to simulate the
development of the Boulder storm in the surface layer.
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PTE (m’s?)
dataset analysis =150.0
standard model 93.9
k-L model 48.1
high Rer k-€ model 183.9
high Rer k--Ri, model 168.13
high Rey 5SGL model 142.0

Table 2: Perturbation kinetic energy at x = 50km, z = 6000m ,
PKE =1/2 < U;(t)- < U;(t) >>* (see Paragraphe 5.3).
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Figure 2: Detail of the horizontal velocity U(t) near the
mountain after (a) t=3h30 and (b) t=6h of integration time for
the high Reynolds number k-€¢ model. (a) shows the
developement of the primary stratospheric wave and (b) shows
the movement of the two high wind speed cores on the ground.
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Figure 4: Time averaged horizontal velocity < U(t)>
provided by (a) the k-¢ and (b) k-€-Ri, turbulence models with
the high Reynolds number € equation and (c) the k-L model.
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Figure 3: Analysis of westerly wind component (ms™) on 11 January 1972, made from the one aircraft and sonde data. The analysis

below 470mb (the surface layer) was deduced from the mass
dimensional and steady (from Lilly, 1978).

conservation equation with the assumptions that the flow is two-
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Figure 5: Detail of the horizontal velocity U(t) near the N
mountain after t=5h of integration time for (a) the standard k-¢ 400 g
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Figure 6: Detail of the turbulent kinetic energy (m’s™) after
t=3h of integration time for (a) the high Reynolds number k-&
model, (b) the high Reynolds number k-e-Ri, model, (c) the
high Reynolds number 5GL model and (d) the k-L model. The
pluses show the periods of significant turbulence during the
aircraft track (from Lilly, 1978).
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