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ABSTRACT

Turbulent flow over idealized water waves is inves-
tigated using direct numerical simulations at a bulk
Reynolds number Re = 8000 over non-evolving water
waves with varying waveslope ak and wave age c¢/u..
The results show that waves significantly influence the
mean flow, vertical momentum fluxes, velocity vari-
ances, pressure, and form stress (drag). Compared to a
stationary wave, slow (fast) moving waves increase (de-
crease) the form stress. A region of closed streamlines
(or cat’s-eye pattern) centered about the critical layer
height was observed at low to moderate values of c/u.
and was found to be dynamically important in determin-
ing the mean flow, turbulent fluxes, and surface form
stress.

INTRODUCTION

Our understanding of the physical mechanisms at
work in air-sea interaction remains elusive because of
the formidable difficulties of obtaining and interpreting
field observations over the open ocean, e.g., Edson and
Fairall (1998). From the perspective of the atmospheric
boundary layer, questions persist as to the influence of
ocean waves on the height of the wave induced bound-
ary layer, the partitioning of the vertical momentum flux
between turbulent and wave induced components, the
maodification of Monin-Obukhov similarity theory, and
the role wave age plays in the determination of surface
drag.

There is an extensive body of literature on flow
over waves both experimental and computational us-
ing second-order closures (e.g., see Belcher and Hunt
(1998) for a review), and a few turbulence resolving
simulations above stationary roughness (e.g., Cherukat
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Figure 1: Sketch of 3D Couette flow driven by veloc-
ity U, over a moving wavy boundary of wavelength
A (wavenumber k = 2r/A), phase speed c, amplitude
a, and waveslope ak = a2n/A in a domain of size
(Lx,Ly,h) = (6,5,1)A. The surface grid is shown with
less resolution than actually used in the computations.

et al., 1998). The direct numerical simulations de-
scribed in this work serve as a precursor for more geo-
physically realistic large-eddy simulations over finite
amplitude waves to be considered in the future.

PROBLEM FORMULATION

The problem considered is viscous three-dimensional
turbulent Couette flow over two-dimensional water
waves. A sketch showing the flow orientation, coordi-
nate system, and the sinusoidal lower boundary is given
in Fig. 1. We adopt a coordinate system where x is
aligned with the primary flow direction, y is parallel to
the wave crests and z is measured vertically from the
mean water surface. The corresponding Cartesian ve-
locity components are (u,v,w) and the fluid viscosity
and density are (v,p). In our idealization, the water
wave is assumed to be a two-dimensional, periodic (in
x), non-evolving, deep-water gravity wave. The orbital
velocities at the water surface, which are included in the
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surface boundary conditions, are assumed to be given
by first order wave theory. For our computations and
analysis, the frame of reference is tied to the waves and
then the water surface displacements and orbital veloci-
ties are independent of time. The flow is assumed to be
periodic in the horizontal directions (x,y) and is driven
by a large scale constant velocity U, imposed at z = h.
Velocity and length scales are made dimensionless by
U, and h, respectively.

NUMERICAL METHOD .

The numerical method used to solve the continu-
ity, momentum, and scalar transport equations borrows
heavily from our experience with large-eddy simula-
tions of geophysical flows (e.g., Sullivan et al., 1996)
and the recent developments described by Zang et al.
(1994). In order to accommodate curved boundaries,
the usual staggered grid arrangement has been replaced
by a cell-centered arrangement for all variables. We
use a momentum-interpolation procedure similar to that
in Rhie and Chow (1983). This method has been used
successfully in Reynolds-averaged closure calculations,
but its performance for turbulence simulations is rela-
tively recent (e.g., Zang et al., 1994).

For the specific problem considered, the conservation
equations for mass, momentum, and scalar transport
are first transformed into computational space using the
simple conformal (thus orthogonal) transformation

E x— ige *e®
n|= y )
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proposed by Benjamin (1959). Here (§,1,() are sur-
face fitted coordinates roughly aligned with the Carte-
sian (x,y,z) coordinates. { = 0 corresponds to the
lower boundary of the physical surface. The metric ele-
ments connecting the Cartesian and curvilinear systems
dE;/dx; are written in closed form using (1). The con-
tinuity equation and the advective terms in the momen-
tum and scalar transport equations are written in strong
conservation form.

In our present direct numerical simulation (DNS)
code with a cell-centered arrangement, the spa-
tial differencing remains pseudo-spectral along trans-
formed horizontal coordinates and second-order finite-
difference in the transformed vertical direction while
the time advancement is a three stage Runge-Kutta
scheme. The velocity and pressure are determined by
a fractional step method which determines the pressure
so that at each new time level the incompressibility con-
straint is enforced. Variable coefficients appear in the
Poisson equation for pressure which requires an itera-
tive solution method.
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Table 1: Simulation Properties

ak c  c/ue wux10® Dp/ui « zJ

0 0 0 3.13 0 0.41 0.17
0.1 0 0 3.21 0.129 0.41 0.22
0.1 0.125 3.1 3.20 0.181 0.35 0.60
0.1 025 7.84 3.19 0.124 034 0.71
0.1 0365 11.5 3.17 0.022 039 0.26
0.1 050 16.2 3.08 -0.016 035 0.39
0.1 070 227 3.08 -0.035 037 0.27
02 025 732 3.42 0.262 034 1.47

RESULTS

For our turbulence simulations, we consider cases
with different values of a and c, including one with a
flat, stationary boundary (@ = ¢ = 0). A summary of
the bulk simulation properties is given in Table 1 which
lists the waveslope ak, dimensionless phase speed c,
wave age ¢/ u., the nondimensional friction velocity u.,
form stress D)/ uf, von Karman constant K, and dimen-
sionless roughness length zJ. We choose the Reynolds
number sufficiently large (Re = U,h/v = 8000) so that
the turbulence is fully developed. The corresponding
wall Reynolds number Re. = u.h/2v ~ 130. Our bulk
Reynolds number is well beyond the transitional value
(Re =~ 2000). The number of gridpoints employed is
(Nx,Ny,N;) = (144,96,96) which is adequate to cap-
ture the dissipation range at our Reynolds number. The
vertical spacing varies from 1.0 to 5.5 in wall units
AL = Alu./v. Velocity and length scales normal-
ized by wall variables, i.e., (1/u«,V/u.), are indicated
by ()*.

Flow Visualization

Figure 2 is a visualization of the total fluctuating hor-
izontal velocity (wave correlated u,, plus turbulent u'
components) in an x — y plane near the surface for flow
over a flat boundary and two cases with moving wavy
walls, viz., (c/us,ak) = (7.8,0.1) and (c/u,ak) =
(22.7,0.1). We observe that waves drastically alter the
near surface flow patterns. The near wall streaky struc-
ture, prevalent in flat wall boundary layers, is disrupted
by the waves. Wave pumping leads to small pockets of
positive and negative fluctuating velocity with horizon-
tal length scales roughly equal to A/2 which becomes
more pronounced as the wave speed c increases relative
to the wind speed. A similar effect is observed in the
vertical velocity field w and consequently the instanta-
neous turbulent flux fields are also modified by the pres-
ence of waves.



Figure 2: Fluctuating velocity (u,, + ') /u. in horizontal planes near the the lower boundary {* = 5.2; left panel flat
case; middle panel (c/u,,ak) = (7.8,0.1); and right panel (c/us,ak) = (22.7,0.1). Color scheme varies from light to

dark corresponding to the range [—3.5,3.18].
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Figure 3: Surface form stress, normalized by u2, for
several values of ¢/u, and ak = 0.1. Values from our
DNS are marked with solid dots, and the open symbols
indicate values from three different turbulence closure
calculations by Li et al.(1999), viz., E — kz (O symbols),
g%l (o), and Launder-Reece-Rodi (x) turbulence mod-
els.

Surface Drag
We computed the surface form stress (drag)
1 dzpay
D=5 | P dx, @

where p is the surface pressure and dzpqy/dx is the sur-
face slope. The results are shown in Fig. 3 as func-
tion of wave age c/u, at fixed waveslope ak = 0.1. The
maximum normalized form stress D, / u? is slightly less
than 19%. At small ¢/u,, the form stress is positive

and acts in concert with the viscous stress to deceler-
ate the flow near the wall, while at large c/u. an oppo-
site trend is observed; the surface form stress is negative
and acts as a thrust in opposition to the surface viscous
stress. The critical value of ¢/u, that marks this transi-
tion occurs at ¢/u.|,r & 14. For comparison, the results
from various second-order closure calculations are also
shown. Our DNS calculations are similar in magnitude,
but clearly suggest a smaller ¢/u.|;, than the turbulence
closure calculations. The calculations of Li et al. (1999)
assume the lower surface is aerodynamically rough and
the flow is Reynolds number independent so that the
mean velocity profile is presumably logarithmic right
down to the water surface. Both Reynolds number and
surface roughness are known to influence the form drag
(Harris et al., 1996; Gent and Taylor, 1976). Categoriz-
ing the flow by wave age, either as slow moving waves
¢/uy < c/uy (with positive form stress) or fast mov-
ing waves ¢/u. > c/u.|sr (With negative form stress), is
useful for interpreting the results to be presented later.

Mean Velocity Profiles

The effect of moving water waves on the mean ve-
locity profiles is one of the open questions in air-sea
interaction. Does the presence of moving waves modu-
late the near surface flow leading to departures from the
usual log-law variation over a solid stationary surface ?
In order to address this issue, we compared the mean
velocity profiles from our simulations to the log-law

(€))

This log-linear variation was assumed to apply to all
profiles starting at z+ > 25. A least-squares curve fit of
the profiles determined K and b, and hence 7} = ¢™®.
We estimate the error bar associated with determining
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Figure 4: Vertical profiles of mean velocity for flow
over moving waves of varying c/u, and ak at Re, =
130.

K, b, and z} to be quite small.

The results in Table I indicate that the effect of waves
on the roughness length z} is quite pronounced. Given
the relatively small variation in K, our results show
that the change in z with wave age is dominated by
changes in the log-law intercept b. The utility of z;
is its basis for classifying the sea surface condition.
For example, Kitaigorodskii and Donelan (1984) pro-
pose the following broad classification of the sea sur-
face state: zJ ~ 0.1 smooth, 0.1 < z} < 2.2 transitional,
and z} > 2.2 fully rough. Based on the above criterion,
the surface conditions in the present simulations are in
the low to middle transitional regime except for case
(c/ux,ak) = (7.32,0.2) that just approaches the bottom
of the fully rough regime. Since our predicted z; lies in
the transitional regime the current low-Reynolds num-
ber DNS simulations are potentially relevant to the geo-
physical regime.

We found a strong link between roughness length
and wave age; slow moving waves are characterized
by large z; (large positive form drag) while fast mov-
ing waves have small z/ (small negative form drag)
consistent with the results in Fig. 3. The complicat-
ing influences of moving waves is further illustrated
if we compare zJ over a smooth flat surface with
case (c/u.,ak) = (22.8,0.1). Surprisingly, z} is only
slightly greater in the presence of finite amplitude fast
moving waves indicating that the lower surface in this
case is nearly as smooth as flow over a flat boundary
(see also Hsu and Hsu, 1983).

In Fig. 4, vertical profiles of the mean horizontal ve-
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Figure 5: Phase averaged streamlines over stationary
and moving waves with ak = 0.1 in surface fitted co-
ordinates: upper, ¢/u. = 0; upper middle, ¢/u, = 3.9;
lower middle, c/u. = 7.8; lower, ¢/u, = 11.5. The dot-
ted line corresponds to the height of the critical layer
where (u) + uy,, = 0.

locity in log-linear coordinates are displayed for vary-
ing c/u.. (Note the dimensionless phase speed is in-
cluded in the mean profiles, z is measured from the
mean water surface, and the constants Kk and z} are
taken from Table 1.) All the profiles collapse to the log-
linear variation beyond z/z, > 100. Below z/z, < 100
the profile variation depends on wave age and wave
slope. The general trend is that cases with larger z;
display a shorter buffer region and longer logarithmic
regions. Notice that for case (c/u«,ak) = (7.3,0.2), the
velocity profile is near log-linear starting from the crests
of the waves indicative of its approach to the fully rough
regime.

Critical Layer Dynamics

In order to isolate the mean wave-induced flow fields
ensemble and phase averaging operators (e.g., see Hsu
et al., 1981) were applied to the velocity components.
The resulting velocity field thus consists of ensemble
means ({u),(w)), which are functions of {, and wave
correlated components (u,,,wy,), which vary with both
(,0). The phase averaged vectors ({u) + uy, (W) +wy,)
are shown as streamlines in Fig. 5 for several different
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Figure 6: Contours of normalized wave correlated fields. Contours progress from darker to lighter shading with
negative (positive) values for the light (dark) shaded family: contour values for uy, /u. (+0.2,+0.3,+0.5,+0.7),
ww /s (£0.15,40.2,40.3,40.5), and flux u,,wy,/u? (£0.02,+0.05,+0.1,+0.2). The dotted line is the critical layer

height.

values of ¢/u, including the reference case c/u, = 0.

The streamline patterns over moving waves differ
from their stationary counterparts in dynamically im-
portant ways. Viewed in the frame of reference mov-
ing with the waves, the average flow near the surface
must be opposite in direction to the primary flow aloft
for nonzero c/u.. A measure of the vertical extent of
the reversed flow region is the critical layer height z.,
(e.g., Belcher and Hunt (1998)) defined as the vertical
location where the total streamwise velocity is identi-
cal to zero, i.e., where (u) + u,, = 0. For given ak, z.,
depends on c/u. and x. At low c/u., z. is generally
small z., < 0.1/k and is strongly asymmetrical about
x, being thinner on the windward side of the wave and
thicker on the leeward side. At moderate c/u. = 7.8,
Zcr 18 higher, tends to follow the wave shape and there is
less asymmetry compared to the case with lower c¢/u..
Finally, for fast moving waves z,, > 0.5/k and is nearly
flat, independent of x.

The structure and importance of the critical layer in
flow over moving waves has been the subject of much
analysis (see e.g., Miles, 1957; Lighthill, 1962). A con-
sequence of the critical layer is that a region of closed
streamlines or “cat’s-eyes” must occur if there is any pe-
riodic variation of the mean flow along the wave, e.g.,
Lighthill sketches a symmetrical cat’s-eye pattern di-
rectly over the wave crest. In the present DNS, the
phase averaged cat’s-eye pattern at low c¢/u, hugs the
lower boundary with its center located just upwind of
the wave trough (x ~ 1.4) and extends nearly over the
entire wavelength. Notice also that directly above the
center of the cat’s-eye pattern the flow is displaced ver-
tically and no longer follows the wavy lower boundary.
In other words, for slow moving waves (c/u. < 11) the
region of closed streamlines, which encompasses rel-
atively slow moving fluid, acts similar to an obstacle
to the fast moving flow above z., (i.e., the outer flow)

deflecting the outer mean streamlines away from the
moving wavy surface. Meanwhile, in the case of fast
moving waves (c/u. > 11) the critical height is well
above the surface and nearly independent of x and thus
the cat’s-eye pattern only slightly perturbs the near sur-
face streamlines which closely follow the wave shape.
Since z., increases rapidly with ¢/u. the interaction be-
tween the critical layer and the wave quickly diminishes
for fast moving waves. The size, shape, and streamwise
and vertical location of the mean cat’s-eye pattern, from
our DNS, are clearly dependent on c/u., but overall are
centered between the crest and trough and are at least as
thick as the wave amplitude a in good agreement with
the measurements of Hsu et al. (1981) for slow moving
waves.

Wave Correlated Motions

The effect of the critical layer on the nondimensional
wave correlated fields (uy,wy)/us and their fluxes
uywy, [ uZ for case (c/u.,ak =7.8,0.1) is next illustrated
in Fig. 6. In this figure, we show spatial (x,z) contours
of (uw,ww,uwwy) and their relative orientation to the
critical layer height z,.

Inspection of the w,, contours shows that for z < z,
the effects of the reverse mean flow and the orbital ve-
locity of the water, which varies like akc sinkx, act in
concert to produce positive (negative) w,, on the lee-
ward (windward) side of the wave; a variation opposite
compared to the stationary case (c/u«,ak = 0.0,0.1).
Above the critical layer the (x,z) positions of the max-
imum and minimum w,, occur roughly above the wave
crests and troughs. The variation of u,, is more complex
than wy,, being more tightly coupled to conditions above
and below the critical height. u,, varies more smoothly
across z., than does w,, but the u,, contours exhibit a
pronounced downwind tilt. The contours of u,, as well
as its streamwise integrated value hint at a minimum
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near kz = 0.5, which is just above the cat’s-eye pattern
(see Fig. 5). Above z.,, the streamwise wave corre-
lated u,, maintains the same sign sense as in the station-
ary case, but with a more exaggerated streamwise bias.
Beneath z,, the wave correlated flux u,,w,, is predomi-
nantly negative and decreases (becomes more negative)
with increasing c¢/u.. For this value of c¢/u., where
the effects of the critical layer are important u,,w,, > 0
for z > z, like flow over stationary waves. Our results
for u,,w,, are similar to the measurements of Hsu et al.
(1981) who show that the wave correlated flux is posi-
tive (negative) above (below) the critical layer. The vari-
ation of the wave correlated fields adds further support
to the speculation that the critical layer, and the forma-
tion of a cat’s-eye pattern in essence alters the effective
shape of the lower boundary that the outer flow sees,
i.e., the flow above the critical layer responds to the ge-
ometry given by z,.

CONCLUSIONS

Results from these DNSs show that the height of
the wave induced boundary layer extends out to about
kz= O(1) from the water surface and that complex cou-
pling between turbulence in the air and wave-induced
surface motions occurs dependent on the wave age pa-
rameter ¢/u,. The proximity of the critical layer to the
wave surface and the resulting cat’s-eye pattern signif-
icantly influences the mean flow patterns, wave corre-
lated fluxes, and surface drag.
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