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ABSTRACT

Experiments by Castaing et al. (1989) showed that the
Nusselt number versus Rayleigh number power law scaling
exponent in Rayleigh-Benard convection is 2/7 rather than
the classical 1/3 over a large range of Rayleigh number 10’-
10'%). They derived two scaling theories (A-I and A-II) that
result in the 2/7 power law scaling. Adrian (1996) derived
corresponding scaling laws for the vertical profiles of the
r.m.s. temperature and velocity fluctuations, and provided
experimental evidence in support of the A-layer scalings.
However, due to the scatter in the experimental data for the
r.m.s. temperature profiles in unsteady non-penetrative
convection, the data was not able to select between the two
A-layer scalings. The present set of experiments in
Rayleigh-Benard convection were conducted to provide a set
of well-converged data that might support of the A-layer
scalings. However, the r.m.s. data over the outer layer do
not conclusively select between the A-I and A-II scalings.
The data are fit by a power-law with exponent —0.4, not with
the —1/2 exponent required by the A-I theory. And, the log-
law required by the A-1I theory was found not to be a good
fit to the data. Thus, neither of the theories adequately
describes the temperature fluctuation data.

INTRODUCTION

A-layer Scaling

Measurements of heat transfer in Rayleigh-Benard
convection in helium gas at low temperature by Castaing et
al. (1989) showed that the Nusselt (Nu) number versus
Rayleigh (Ra) number power law scaling exponent is very
close to 2/7 over a large range of Ra (107-10'%).  This
contradicts the classical 1/3 power law result of Priestley
(1959). Castaing et al. (1989) proposed a new scaling
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theory, called A-layer scaling, and derived a 2/7 scaling law
under two different circumstances (A-I and A-II). The A-
layer theories postulate a model of the flow consisting of
three layers: a very thin A-layer adjacent to the wall, a
thicker mixing layer above the A-layer, and an even thicker
core layer above the mixing layer.

In the core layer, the A-layer theory assumes that the
inviscid length, velocity, and temperature scales of
Deardorff (1970) apply. The length, velocity and
temperature scales in the A-layer for the A-I and A-II theory
are summarized in Table 1. All symbols are defined in the
nomenclature section.

TABLE 1: LENGTH, VELOCITY, AND
TEMPERATURE SCALES IN THE A-LAYER THEORY

Length Velocity Temperature
core | z*=L/2 w*=(BgQoz*)” 0*=Qy/w*
M | A=z*/Nu | w,=BgATAvV AT
AL | A=z*/Nu | wy=BgATAv A= KVIPA®

In the A-I theory, the thermals ejected from the A-layer
move through the core, which is not in vigorous motion,
such that they stay intact. Castaing et al. (1989) then assert
that velocity scales in the core and the A-layer are the same.
In the A-II theory, the core flow consists of vigorous
circulations, such that the thermals get ripped apart and are
thoroughly mixed. Thus, they assert that the temperature
scale in the A-layer and core is the same. In both cases,
matching of the velocity and temperature scales respectively
in the mixing layer yields the 2/7 scaling law. Castaing et al.
(1989) argue that the second model is the more physically
plausible. However, it is not known which of the two
models of the core flow occurs. And, since both models lead
to a 2/7 scaling, measurements of Nu vs. Ra cannot select
between them.



It should be noted that even though the 2/7 scaling is
observed over a wide range of Rayleigh numbers, it is not
asymptotic. Siggia (1994) argues if there is an asymptotic
scaling then it must be the 1/3 scaling. However, recent
experiments in low-temperature helium gas by Chavanne et
al. (1996) indicate that above Ra of 3 x 10" there is a
departure from the 2/7 power law in which the exponent
grows without reaching an asymptotic value. In particular,
no 1/3 power law region was observed. Thus, the issue of
the Nu vs. Re scaling is not resolved.

A-layer Scaling for Velocity and Temperature

The A-layer scaling arguments of Castaing et al. (1989)
were used by Adrian (1996) to derive corresponding scaling
laws for the vertical (z-direction) profiles of r.m.s.
temperature fluctuations (0p) and r.m.s. vertical velocity
fluctuations (0,,) by asymptotic matching of the core and A-
layer scales in the mixing layer. Both A-layer theories lead
to log-laws for oy, (as opposed to a 1/3-power law for the
classical theory). In the case of Gy, the A-I theory leads to a
power law with exponent —1/2, while the A-II theory leads to
a log law (in contrast to the —1/3 power law for the classical
theory). These results are summarized in Table 2.

TABLE 2: COMPARISON OF CLASSICAL, A-l, AND
A-Il SCALING LAWS

Classical A1 A-IT
Temperature | Gp~z o~ 7" Cp~Inz
Velocity o, ~z" Ow~1Inz Oy~Inz

Adrian (1996) used LES (Schmidt and Schumann, 1989)
and experimental (Adrian et al.,, 1986) data of non-
penetrative convection and DNS (Kerr, 1996), LES (Moeng
and Rotunno, 1990) and experimental (Deardorff and Willis,
1967) of Rayleigh-Benard convection to examine the
velocity scaling. In all cases, the r.m.s. velocity data was fit
by a logarithmic curve, supporting the A-layer scalings for
velocity. However, since both A-layer scaling laws result in
logarithms, the velocity measurements are unable to select
between the A-I and A-II theories.

Adrian (1996) used LES (Schmidt and Schumann, 1989)
and experimental (Adrian et al, 1986) data of non-
penetrative convection to examine the temperature scaling.
However, due to the scatter in the experimental data, the
curves were fit equally well by a logarithmic curve and a
-1/2 power law. The scatter of the experimental data in non-
penetrative convection occurs as a result of the unsteady
nature of the flow, which does not allow for long averaging
times.

Thus, well-converged temperature statistics are required to
select between the two A-layer theories. Long averaging
times are possible in Rayleigh-Benard convection due to the
statistically steady nature of the flow. The objective of this
study is to wuse Rayleigh-Benard convection to
experimentally obtain well converged temperature statistics
in order to select between the scaling theories.
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RAYLEIGH-BENARD APPARATUS AND
INSTRUMENTATION

Planform visualizations of turbulent thermal convection
have shown that the convection cells that develop have a
maximum horizontal extent less than approximately 5 layer
depths. Thus, in order to approximate infinitely wide
horizontal layers in the lab, a high aspect ratio (6:1 - 8:1)
Rayleigh-Benard experiment has been constructed.

The planform dimension is 91 cm X 91 cm, while the layer
depth can be varied from 11 cm -18 cm. The working fluid
is de-ionized water. A layer depth of 12 cm, corresponding
to an aspect ratio of 7.5:1 was used for the experiments
described here. The experimental rig is shown schematically
in Figure 1.

The layer is heated from below by four etched-foil
resistance heating mats which are bonded to the bottom of a
2.5 cm thick aluminum plate using a pressure sensitive
adhesive. The spatial uniformity of the temperature at the
upper surface of this aluminum plate was examined under
non-convective conditions using thermo-chromic liquid
crystals. The temperature distribution was found to be
uniform to within the resolution of the crystals,
approximately 0.1 K (less than 1.5% of the temperature
drop across the layer, AT). The electrical power to the
resistance mats was provided by four DC power supplies.
The mean voltage and current output of the power supplies
was stable to within 0.1% over the course of an experiment,
with a ripple of less than 0.2% of the output voltage.

The layer is cooled from above by a 7.5 cm thick
aluminum plate that has rectangular aluminum channels
attached to its upper surface. The channels had cooling
water pumped through them at a rate of 680 liters/minute by
a pair of centrifugal pumps. At this flow rate the
temperature rise in the cooling water was less than 0.5% of
AT at the highest heat flux. An array of 10 thermocouples
located 12 mm from the lower surface of the aluminum plate
was used to measure the temperature distribution under
experimental conditions. The mean temperature distribution
was found to be uniform to within 2% of AT at all Rayleigh
numbers. The lower plate was leveled to within 0.0004
radians of horizontal by means of leveling screws and a
depth micrometer. The distance between the two plates was
maintained to within 12.0 £ 0.1 cm by means of machined
Plexiglas spacers. The variations in the spacing between the
two plates is due to the fact that the plates are not perfectly
flat.

The side walls of the rig are made from Plexiglas with
glass inserts for optical access. In order to minimize cooling
due to conduction through the side walls, they were
insulated using 5 cm of Styrofoam insulation. This resulted
in less than 1% of the total heat flux being lost through the
side walls at all Rayleigh numbers used. Shadowgraph flow
visualization indicated that there were no large-scale
circulations due to side-wall cooling or non-uniformity of
the upper or lower plate temperature distribution.

The temperature measurements in the fluid layer were
made using 0.3 mm diameter thermocouple probes, which



are smaller than the Kolmogorov (n ~ 0.6 mm) scale for the
highest Rayleigh number used. Thus, all the relevant scales
in the flow are captured. The data were taken by a PC using
a 16-bit A/D board and 8™ order low-pass elliptical filters,
such that the system has noise rejection sufficient for a
temperature resolution of 0.01 K.

In low aspect ratio cells (~1:1) the horizontal position of
the thermocouple is important. That is, the temperature and
velocity statistics change with the horizontal location of the
probe (Castaing et al., 1989). However, in the high aspect
ratio cell used here, the statistics were found to be
independent of horizontal position (as long as the probe is
not near a side wall). For all the measurements made here,
the probes were horizontally displaced by approximately 10
cm from the center of the cell.

EXERIMENTAL PARAMETERS USED

The r.m.s. temperature profiles were measured over a
decade of Rayleigh numbers between 1.9x10% and 2.2x10°.
This is well within the regime in which the 2/7 power law
was found to apply. And, the Nu vs. Re power law scaling
exponent obtained in the present experiments, 0.295, is in
reasonable agreement with the 2/7 (0.286) power law.

The profiles consisted of 18 z-positions in the lower half of
the layer between 2z/z*=0.02 and z/z*=1.00. The
experimental parameters are summarized Table 3. All
parameters are evaluated at the bulk (core) temperature, T,

TABLE 3: EXPERIMENTAL PARAMETERS AND

SCALES
Ra 1.9x10° [ 45x10° [ 1.1x10° [ 2.2x10°
Nu 36.3 40.9 61.9 70.7
Pr 6.3 5.8 4.9 4.0
AT 6.1K 121K 219K 30.1K
Ty 24.1°C 27.0°C 34.3°C 43.2°C
H 0.12m 0.12m 0.12m 0.12m
z* 60.0mm | 60.0mm | 60.0mm | 60.0 mm
w* 34mm/s | 4.6 mm/s | 7.0 mm/s | 8.7 mm/s
0* 0.08 K 0.13K 0.24K 0.31K
A 1.65mm | 1.47mm | 097 mm | 0.85 mm
Wi 44 mm/s | 82 mm/s | 93 mm/s 140mm/s
An 0.012K 0.014 K 0.036 K 0.039 K

Due to the statistically steady nature of Rayleigh-Benard
convection, long averaging times are able to be used in order
to obtain well converged statistics. The estimate of the
r.m.s. of the temperature fluctuation at each point was made
using 20 000 samples, each taken approximately one integral
time scale apart. That is, approximately 10 000 independent
samples were used for each data point.

Rayleigh-Benard convection is a relatively slow process.
The measured integral time scales ranged from 2 seconds
(Ra = 2x10%) to 4 seconds (Ra = 2x10%. Thus, it took
approximately 4 to 8 days of continuous operation to obtain
each of the r.m.s. temperature profiles.
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RESULTS AND DISCUSSION

The data have been normalized using the core layer scales
(Deardorff scales). These scales were found to collapse the
data better than the A-layer scales.

Figure 2 is a log-log plot of the data across the entire half-
layer. The solid line is the best power-law fit to the data
between 0.02 £ z/z* £ 0.60. Beyond approximately
z/z* = 0.60 in Rayleigh-Benard convection, the curve is not
expected to follow a power-law (or log-law) since it must
reach a maximum at z/z* = 1.0 due to symmetry. A scaling
exponent of —0.4 was found to best fit the data. Even
though this curve is a good fit to the data across almost the
entire layer, this exponent lies between the —1/3 exponent for
the classical scaling theory and the —1/2 exponent for the A-I
scaling theory. Thus, the data do not support the A-I
scalings.

A slight decrease of the magnitude of the scaling exponent
with increasing Rayleigh number (from -0.42 at 2 X 10% to
-0.38 at 2 x 10°) was observed. However, due to the
relatively small range of Rayleigh number achieved, no
conclusions are made about this trend.

Figure 3 is a semi-log plot of the data with the solid line
being the best log law fit to the data between
0.02 £z/z%#<0.60. It can be seen that the log-law is not a
good fit to the data beyond z/z* = 0.3 and below
z/z*=0.06. So, although the data do not conclusively
support the A-II scaling, they do not invalidate it either.

Figure 4 is a plot of the probability density function of the
temperature fluctuations at the vertical center of the cell.
Castaing et al. (1989) showed that when normalized by the
local r.m.s. value, the data collapse onto a single curve, as is
the case here. The probability density function of centerline
temperature fluctuations can be fit by back-to-back
exponential functions, which are the solid lines on the plot:

(N

Here we obtain ¢ = 1.3 on the cold side and ¢ = 1.4 on the
hot side. The slight asymmetry may be due to fact that the
convection is not perfectly symmetrical about the layer half-
depth plane due to Prandtl number variations between the
cold and hot surfaces. Exponential tails (¢ = 1.2) were
obtained by Castaing et al. (1989) in their unit aspect ratio
cell only for the probe at the center of the cell. When the
probe was horizontally offset the tails weren’t exponential
and the pdfs were not symmetrical. Exponential tails were
only observed in the same group’s 6.7:1 aspect ratio helium
gas cell when the temperature signal was high-pass filtered
using a filter the length of the cell turnover time (Wu and
Libchaber, 1992). It is not known why exponential tails
were not observed in the unfiltered signal, as is the case
here. In DNS of Rayleigh-Benard convection, Sirovich et al.
(1989) obtained exponential tails (c = 1.25) as well. Christie
and Domaradzki (1994) have shown that small scales
produce exponential tails while large scales produce
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Gaussian tails. Thus, the exponential tails observed here
suggest that the flow may be dominated by small scales.

CONCLUDING REMARKS

The r.m.s. data obtained from this set of Rayleigh-Benard
experiments do not conclusively support either the A-I or
A1 scaling. The data are fit by a power-law but not with
the —1/2 exponent required by the A-I theory. And, the log-
law was found not to be a convincing fit to the data. Some
aspects of the measurements are not ideal. In particular the
spatial resolution of the temperature probe may result in
erroneous data close to the wall. Also, the high heat fluxes
lead to significant variation of the thermo-physical
properties. Thus, further work is needed before a conclusive
assessment of the scaling can be made.

FUTURE WORK

Work has commenced on obtaining the velocity fields in
unsteady non-penetrative and Rayleigh-Benard convection
using stereo digital-PIV, such that all three velocity vectors
are measured on a planar domain spanning the layer depth
(or half-depth). Using the assumption of axi-symmetry with
respect to the horizontal directions, the full three-
dimensional velocity correlation tensor can be obtained.
With this data, the nature of the core flow can be examined
directly.
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NOMENCLATURE
Cp specific heat [Jkg'K™']
g gravitational acceleration [ms?]
H, heat flux at lower surface [Wm™']
L layer depth [m]
Nu Nusselt number  pp, 0z

KAT
Pr Prandtl number  p. Y

K
Qo kinematic heat flux at lower surface [Kms™]

H 0
Qo =
PCy
3
Ra Rayleigh number p, = M
KV

Ty bulk (core) temperature [°C]
Wh lambda layer velocity scale [ms™]
w* core layer velocity scale [ms™]
z vertical distance from lower surface [m]
z* layer half-depth (L/2) [m]
Greek Symbols
B coefficient of thermal expansion [K]
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AT temperature drop across layer [K]

An lambda layer temperature scale [K]

n Kolmogorov length scale [m]

K thermal diffusivity [m’s]

A lambda layer length scale [m]

\% kinematic viscosity [m%s]

(o7 r.m.s. of temperature fluctuations [K]

O r.m.s. of vertical velocity fluctuations [ms']
0* core layer temperature scale [K]

p fluid density [kg m™]

REFERENCES

Adrian, R. J., 1996, “Variation of temperature and velocity
fluctuations in turbulent thermal convection over horizontal
surfaces,” Int. J. Heat Mass Transfer, Vol. 39, pp. 2303-
2310.

Adrian, R. J., Ferreira, R. T. D. S., and Boberg, T., 1986,
“Turbulent thermal convection in wide horizontal fluid
layers,” Experiments in Fluids, Vol. 4, pp. 121-141.

Castaing, B., Gunratne, G., Heslot, F., Kadanoff, L.,
Libchaber, A., Thomae, S., Wu, X-Z., Zaleski, S., and
Zanetti, G., 1989, “Scaling of hard thermal turbulence in
Rayleigh-Benard convection,” J. Fluid Mech., Vol. 204, pp.
1-30.

Chavanne, X., Chilla, F., Chabaud, B., Castaing, B.,
Chaussy, J., Hebral, B., 1996, “High Rayleigh number
convection with gasseous helium at low temperatures,”
Journal of Low Temperature Physics, Vol. 104, pp. 109-129.

Christie, S. L., and Domaradzki, J. A., 1994, “Scale
dependence of the statistical character of turbulent
fluctuations in thermal convection,” Phys. Fluids, Vol. 6,
pp-1848-1853.

Deardorff, J. W., 1970, “Convective Velocity and
Temperature Scales for the Unstable Planetary Boundary
Layer and for Rayleigh Convection,” J. Atmos. Sci., Vol.
27, pp. 1211-1213.

Deardorff, J. W., and Willis, G. E., 1967, “Investigation of
turbulent thermal convection between horizontal plates,” J.
Fluid Mech., Vol. 28, pp. 675-704.

Kerr, R. M., 1996, “Rayleigh number scaling in numerical
convection,” J. Fluid Mech., Vol. 310, pp. 139-179.

Moeng, C. H., and Rotunno, R., 1990, “Vertical velocity
skewness in the buoyancy driven boundary layer,” J. Atmos.
Sci., Vol. 47, pp. 1149-1162.

Priestley, C. H. B., 1959, Turbulent Transport in the
Lower Atmosphere. University of Chicago Press, Chicago.

Schmidt, H., and Schumann, U., 1989, “Coherent structure
of the convective boundary layer derived from large-eddy
simulations,” J. Fluid Mech., Vol. 200, pp. 511-562.

Siggia, E. D., 1994, “High Rayleigh Number Convection,”
Ann. Rev. Fluid Mech., Vol. 26, pp. 137-168.

Sirovich, L., Balachandar S., and Maxey, M. R., 1989,
“Simulations of turbulent thermal convection,” Phys. Fluids
A, Vol. 1, pp. 1911-1914.

Wau, X-Z., and Libchaber, A., 1992, “Scaling Relations in
thermal turbulence: The aspect-ratio dependence,” Physical
Review A, Vol. 45, pp. 842-845.



- COOLING WATER (680 LITRE $MINUTE) -

WATER LAYER (11 - 18 cm)

AIR GAP FIRE-PROOF PLEXIGLASS

PLEXIGLASS DRY-WALL WINDOW
CORNER SUFPORT RESISTANCE

HEATER

Figure 1: Schematic of the experimental rig.
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Figure 2: R.M.S. of the temperature fluctuations. Solid line is the best power-law fit to the data from 0.02<z/z*<0.60.
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Figure 3: R.M.S. of the temperature fluctuations. Solid line is the best log-law fit to the data from 0.02 < z/z* < 0.60.
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Figure 4: Probability density function of the centerline temperature fluctuations.
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