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Abstract

This paper presents a numerical simulation of
statistically stationary two-dimensional turbulence.
Navier—-Stokes equations are integrated in an adap-
tive wavelet basis where only the evolution of sig-
nificant coefficients is computed. The forcing of the
flow is also done in wavelet space with enstrophy
being injected in both space and scale. The results
show that the flow has reached a statistically sta-
tionary state, which is proved by the fact that en-
ergy and enstrophy remain constant during the flow
evolution while the energy spectrum and the PDF
of vorticity are also maintained. This new forcing,
defined in wavelet space, allows to model the local
production of vortices by instabilities as generically
observed in turbulent shear flows.

1 Introduction

The formation of coherent vortices characterizes the
nonlinear dynamics of turbulent flows, in particular
shear flows. This leads to a sparse representation
in wavelet bases. We have shown [4] [5] that in
two—dimensional turbulent flows the coherent vor-
tices correspond to very few wavelet coefficients:
the strongest ones contain most of the enstrophy,
while the weaker coefficients represent the unor-
ganized background flow . Therefore the wavelet
representation is an efficient basis to study two-
dimensional turbulent flows, since the dynamics of
such flows is largely controlled by their coherent
vortices. Wavelets have first been used for analy-
sis or compression of turbulent flows [4] and, more
recently, we have developed a numerical scheme to
compute two-dimensional turbulent flows directly
in an orthogonal wavelet basis using a Petrov-
Galerkin scheme [7], [8], [12]. This scheme dynam-

ically adapts the basis to follow the flow evolution
in both space and scale, with the nonlinear term
being computed on a locally refined grid [13]. A
different approach has been developed in [2], which
uses wavelets to compress the matrix—vector opera-
tions resulting from a finite difference discretization
of the Navier—Stokes equations. Both schemes have
been validated by calculating the nonlinear inter-
action of three vortices and comparing the results
with those of a classical pseudo-spectral code.

We have then applied our scheme to compute a
freely decaying turbulent flow [7] and a temporally
developing mixing layer [15]. For both cases the
wavelet representation allows to reduce the num-
ber of degrees of freedom to be computed, although
these fully developed turbulent flows exhibit a large
number of spatial scales.

To obtain statistically stationary turbulent
regimes, classically two different forcing schemes are
used [1], which both operate in Fourier space:

(i) a  negative dissipation within a given
wavenumber band, with an amplification co-
efficient which depends on the wavenumber,

(ii) a white or coloured noise in time, with
a prescribed isotropic spectral distribution,
strongly peaked in the vicinity of a given
wavenumber, with random phases.

For both schemes the choice of the wavenumber
band represents that part of the energy spectrum
where instabilities have a significant growth rate.
But none of these Fourier forcings are satisfactory
to model instabilities (e.g. the Kelvin—Helmholtz
instability encountered in shear flows), because they
inject energy and enstrophy locally in Fourier space
and therefore non-locally in physical space. The
forcing affects all spatial locations in a homoge-
neous fashion, while on the contrary instabilities
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excite vortices locally in space. Another drawback
of Fourier forcing is that the scale of the coherent
vortices is imposed by the scale of the forcing.

In [11] we have developed a new method to force
turbulent flows by local vortex excitation, where the
forcing term depends nonlinearly on the wavelet co-
efficients of the vorticity field. It injects energy and
enstrophy as locally as possible, in both physical
and spectral spaces, while controlling the smooth-
ness of the vortices thus excited to avoid creating
any unphysical discontinuities in the vorticity field.

The purpose of the present paper is the simu-
lation of wavelet forced two—-dimensional turbulent
flows using an adaptive wavelet basis. Hence we
couple the wavelet based forcing method [11] with
the fully adaptive wavelet code [13] [15] and report
on numerical results obtained.

2 Governing equations and
wavelet forcing

To numerically simulate forced two-dimensional
turbulence we consider the Navier-Stokes equations
written in velocity—vorticity form with a forcing
term F. Furthermore we include an artificial dis-
sipative term AW, a so-called Rayleigh friction [1],
which provides an energy sink at large scales. This
is necessary because the energy injected by exter-
nal forcing tends to accumulate at large scales (due
to the inverse energy cascade characteristic of two—
dimensional turbulent flows) and should therefore
be dissipated there to maintain a statistically sta-
tionary regime. The governing equations are :

Ow+v - Vo= vVu4+ A0 + F, V.v=0 (1)
with the velocity field v = (u,v), the vorticity
w = V x v, the stream function ¥ = V~2w and
the kinematic viscosity v. In order to simulate tur-
bulent flows far from the wall regions and to avoid
the treatment of boundary layers, we assume pe-
riodic boundary conditions in both directions, i.e.
our domain is the two-dimensional flat torus 7'
with " = 27 R/ 7Z .

Here we apply a nonlinear wavelet based forcing
approach, which is triggered directly by the nonlin-
ear dynamics of the flow. We define the forcing term
F as a function of w, reconstructed from a subset of
its wavelet coeflicients @ using a two—dimensional
multiresolution analysis (MRA) [3] [4]:

291271
Fley)=C Y, >,
Jo<j<J1 z=0ky=0
Z aﬁki,kyiﬁf,k,,ky(w’y) (2)
©=1,2,3
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with 0 < Jo < J; < J, where J denotes the finest
level in the simulation, C' > 0 and &} . | > ¢. The
scale parameters Jy and J; define the scale range
of the forcing, from the largest scale 277° to the
smallest scale 2=7:. The restriction to the wavelet
coefficients above a given threshold ¢ implies that
only the dynamically active part of the flow, i.e.
the coherent vortices, are forced [11]. Due to or-

thogonality, the coefficients in eq. (2) are given

by &f; ;. = (w, ¥}, ;,), where (-,) denotes the

L? inner product. The two-dimensional wavelets
1/);"1-“%, constituting a MRA, are defined as:
Vi (2) ¢5,(w) , p=1

Vii,(@Y) = 650 (®) ¥ia,(v) s p=2 (3)
Yiie () Yy, (), n=3

where ¢;; and 1;; are the 27—periodic one-
dimensional scaling function and the corresponding
wavelet, respectively.

The strength of the forcing C' and the Rayleigh
friction A are adjusted in such a way that we obtain
a statistically stationary state.

3 Adaptive wavelet scheme

To solve numerically (1) we discretize it, first in
time and then in space (contrarily to classical
schemes, e.g. line methods), to be able to remap
the basis, used for the spatial discretization, at each
time step. For the time discretization we employ
classical semi-implicit finite differences of second
order, with an Euler backwards step for the vis-
cous term, and an Adams-Bashforth extrapolation
for the convection, friction and forcing terms:

(= vVHuwrtt = %aw” - %aw"‘l
- (VFVWw* = ATF — FY) (4)
with time step At, ¢ = 3/(2At) and where f* =

2fn — fn—l‘

The space discretization is based on a method of
weighted residuals. Therefore we develop w™ into
an orthonormal wavelet series

J-127-1 271

wen =L % %
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and we apply a Petrov-Galerkin scheme to (4) with
test-functions 6, being solutions of its elliptic linear
part:

..un
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(0 —vV) 0k (2y) =¥ (2.9)  (6)



These functions are called vaguelettes ! and have
similar localization properties in scale and space as
wavelets have [10]. They are translation invariant
but, due to the inhomogeneity of the operator, the
scale invariance is only recovered asymptotically,
i.e. for j — o0o. Furthermore the vaguelettes in
(6) can be calculated analytically in Fourier space.
Their values are calculated and stored in a prepro-
cessing step of the algorithm.

By construction of the test functions the result-
ing stiffness matrix is diagonalized and therefore we
avoid assembling and solving a linear system at each
time step [8]. Hence the solution of (4) reduces to
a change of basis

4 1
S, = (gow” - gow!
= (VO VW =AW — FR) 0 ) @)

and the active wavelet coefficients of the solution
@"t1 at time step t” are computed by means of a
fast vaguelette decomposition (c.f. [8]). A reduction
of the number of degrees of freedom is obtained by
retaining only those coefficients with |GJ]“Z::';$| > €,
the same threshold as the one employed to define
the forcing F' (2). The index set of active coeffi-
cients in the next time step is then determined from
the previous step by compression of @ with the re-
quired tolerance €. In order to extrapolate the flow
evolution in space and scale for the next time step
we also add to this index set the indices of the ac-
tive coefficients’ neighbours. For more details we
refer to [8].

The nonlinear term v* - syw* is computed by an
adaptive collocation in physical space [13]. This
method (also called pseudo-wavelet scheme) em-
ploys fast transforms between sparse coefficient sets
and locally refined grids [8]. Furthermore a Poisson
equation V2U¥* = w* is solved using a Petrov—
Galerkin scheme, as for (4). In this case the test
functions @ are solutions of the Poisson equation
V20!, i, (@ y) = ¥ i (2,y). The wavelet coeffi-
cients of the stream function ¥* are then calculated
using the fast vaguelette decomposition previously
mentioned. Applying an inverse adaptive wavelet
transform, the stream function is reconstructed on
a locally refined grid. Subsequently, the velocity
v* = (=0, ¥*,0,¥*) and Vw* are calculated us-
ing finite differences of 4th order on an adaptive
grid. Then the scalar product v* - Vw* can be cal-
culated at the grid points. Finally, the right hand
side of (7) is summed up on the adaptive grid in
physical space and then the wavelet coefficients of

1The term vaguelette is derived from the french term ‘on-
delette’, which means wavelet.

the vorticity w™*! are calculated using the adaptive
vaguelette decomposition.

4 Results

We present a numerical simulation of a wavelet
forced two—dimensional turbulent flow computed in
an adaptive wavelet basis. The finest scale accessi-
ble in this simulation is 278, equivalent to the reso-
lution of a non—adaptive scheme with 256> degrees
of freedom. The computation is initialized using
a vorticity field obtained from a decaying simula-
tion just after the formation of coherent vortices.
The statistically steady regime has been reached
with the following parameters: the forcing scale
range lies in between Jy = 3 and J; = 7, viscos-
ity v = 9.9 - 10*m?s~!, strength of the forcing
C =25-10"1s"! threshold e = 5-107%s~! and
Rayleigh friction coefficient A = 1m~2s~!. For the
wavelet decomposition we use spline wavelets of or-
der 4.

In Fig. 1 we observe that energy E and enstrophy
Z are maintained without any oscillation, contrarily
to Fourier forcing where E and Z oscillate around
their mean values. Figure 2 displays the energy and
enstrophy spectra at ¢t = 0s and 20s. They main-
tain their shape with k=% and k=2 power-law be-
haviours, respectively, during the whole computa-
tion. The slopes are therefore steeper than Kraich-
nan’s prediction [9] as also observed with Fourier
forcing [1].

The statistical stationarity of the flow is also re-
flected in the fact that the vorticity PDF does not
change in time (cf. Fig. 3). This PDF exhibits
a non—Gaussian behaviour, as observed in both nu-
merical and laboratory experiments [17]. The heavy
tails correspond to the coherent vortices which are
responsible for the flow intermittency [16].

In Fig. 4 we plot the vorticity field at ¢ = Os
and 20s. We observe that the strongest vortices
are reinforced during the flow evolution. In partic-
ular strained vortices are rolling up, as enstrophy
is locally injected into them by the wavelet forcing,
in a way very similar to the rolling up of vortic-
ity sheets by Kelvin—Helmbholtz instability. We also
check that the same-sign vortex merging mecha-
nism, characteristic in two—dimensional turbulent
flows, is not inhibited by the wavelet forcing. We
find that vorticity at ¢ = 20's exhibits less filaments
in the background, due to the fact that at each time
step the weak wavelet coefficients are discarded.

In Fig. 5 we display wavelet coefficients of vor-
ticity. We use Mallat’s representation [3] which
shows the same field at different scales and for dif-
ferent directions (horizontal corresponding to u = 1
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in eq. (3), vertical to 4 = 2 and diagonal to
pu = 3), with the wavelet coefficients dﬁ iu iy plot-
ted using a logarithmic scale. They are placed at
=2 (1=8,1)+iz, y = 29(1=6, 2)+1iy, 6 being the
Kronecker tensor, with the origin in the upper left
corner and the y-coordinate oriented downwards.
The largest scales correspond to the smallest square
(top left on Fig. 5) while the smallest scales corre-
spond to the largest squares (bottom left for the
horizontal direction, top right for the vertical direc-
tion and bottom right for the diagonal direction).
The scale repartition of the wavelet coefficients of
vorticity confirm the strong intermittency, we have
already noticed from the vorticity PDF. Actually,
the representation of vorticity in wavelet space is
a well suited diagnostics to characterize intermit-
tency, because the increasing sparsity of the wavelet
coefficients while scale decreases gives a quantita-
tive measure of the flow intermittency [16].

In Fig. 6 we show the time evolution of the num-
ber of degrees of freedom used in the adaptive com-
putation. It remains quasi-constant in time and
represents 30% of the total number of coefficients
necessary for a non—-adaptive computation (i.e. 2562
here). This compression is weak because the thresh-
old we have chosen is very small (¢ = 5-1075s71),
which implies that we have actually performed a
DNS-like simulation. If we want to significantly
increase the compression, we would then need a
turbulence model in order to describe the effect of
the discarded wavelet coefficients onto the retained
ones. We have proposed such a model, called co-
herent vortex simulation (CVS) [6] and we plan to
apply it to this wavelet forced problem in future
work.

5 Conclusion and
Perspectives

We have presented the time evolution of a wavelet
forced two—dimensional turbulent flow computed in
an adaptive wavelet basis. The results show that
we have reached a statistically steady state, as the
characteristic statistical diagnostics (i.e. total en-
ergy and enstrophy, the corresponding spectra and
PDFs) do not change in time. The analysis of both
vorticity PDF and the wavelet coeflicients of vor-
ticity reveals the flow intermittency, which is char-
acteristic of the fully-developed turbulent regime.
The evolution of vorticity shows that the wavelet
forcing adequately simulates the Kelvin—Helmholtz
instability which is generic to turbulent shear flows.

This wavelet forcing can also be applied to
simulate inhomogeneous turbulent flows such as
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the two—dimensional temporally developing mixing
layer [15], we have already computed in wavelets,
but without forcing. Future work will be the
wavelet computation of a forced mixing layer with
the same forcing as presented here. Wavelet forcing
is not limited to statistically homogeneous turbu-
lence as it is the case for Fourier forcing, therefore
it seems more physically sound.

Although the adaptive wavelet scheme and the
wavelet forcing presented here have been designed
for incompressible two—dimensional turbulent flows,
they could be extended to three—dimensional tur-
bulent flows, using the three dimensional vorticity-
stream function formulation of the Navier—-Stokes
equation with vector valued wavelet and vaguelette
transforms which is subject of current work.
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Figure 3: PDFs of vorticity at ¢ = 0 and 20.
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Figure 5: Corresponding active wavelet coeffcients
(dark markers) at ¢ = 0 and 20.
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Figure 4: Wavelet forced 2D turbulent flow: vortic-
ity field at ¢ = 0 and 20.
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Figure 6: Evolution of number of active wavelet

coefficients #W LC.
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