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ABSTRACT

Wind-generated surface waves give rise to the development
of periodic unsteady boundary layers on the sea bed.
Naturally-occurring waves may have highly non-linear
characteristics which will affect the boundary layer through
the action of the horizontal pressure gradient at the bed. The
frictional characteristics of the boundary layer will, in turn,
influence the subsequent evolution of a wave, causing the
dissipation of wave energy and hence wave attenuation. In
the present work we investigate the effect of a periodic (but
non-sinusoidal) pressure gradient ‘input’ to the calculation of
turbulent flow over a rough bed. A k-¢ turbulence closure is
used to obtain values for the wave friction factor, f, and
wave energy dissipation factor, f. for different values of the
relative roughness a/k,, where a is the amplitude of fluid
motion at the bed and k; is the Nikuradse equivalent sand
roughness of the bed. At given a/k; the importance of wave
non-linearity effects is examined for different values of H/d
and d/L, where H is the peak-to-trough wave height, d is the
water depth, and L is the wavelength. In the final part of the
paper the propagation of wave power is considered in
relation to the computed values of f..

1. INTRODUCTION

Wave boundary layers in the absence of current action may
be characterized as oscillatory flows driven by a time-
dependent pressure gradient with zero mean. Two measures
of the frictional properties of the flow are generally
considered in relation to sediment transport and wave
attenuation: these respectively are the peak bed shear stress,
Tomax» and the cycle-averaged rate of energy dissipation,

T,.U, , Where up denotes bed velocity outside the boundary

layer. Non-dimensional friction factors, namely the ‘wave
friction factor’ and the ‘wave energy dissipation factor’, are
then defined as

fw = Tp, max /(% pug,max) (1 )

and

£, = Ty /[(2/3)(PU3 )] @)

(see for example Fredsee and Deigaard, 1992). Under linear
(i.e. sinusoidal, or /inearized) conditions the friction factors
at high Reynolds numbers are functions of the relative
roughness only and, furthermore, f, and f, are equal if the
friction velocity varies as a pure sinusoid in phase with the
free stream (Justesen, 1988). Correlations, such as the one
proposed by Nielsen (1992), may then be used to relate the
friction factors to a/k,:

—02
f,=f, =exp {5.5 [kiJ —6.3J A3)

In the non-linear case, by contrast, f, and f, are additionally
functions of the wave parameters H/d and d/L; it is also
shown below that f. may be considerably smaller than f, (a
low value of f. will act to maintain the power a wave
transmits cycle-on-cycle).

Previous computational work on wave boundary layers over
rough surfaces includes both studies of the linear case with a
sinusoidal pressure gradient and also at least one
investigation of non-linear effects. In terms of linear waves
Fredsoe (1984) assumed a logarithmic velocity profile and
proceeded to generate numerical solutions to the unsteady
momentum equation, while Justesen (1988) produced
numerical results using a k-¢ turbulence model. Both authors
reported satisfactory agreement with the experimental data
for £, (with a/k, > 30) obtained by Kamphuis (1975) using an
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oscillating water tunnel. Fredsee and Deigaard (1992)
examined a saw-tooth non-linear wave over a rough bed and
found close agreement between the logarithmic velocity
profile approach of Fredsee (1984) and turbulence model
calculations. A larger body of work exists for unsteady
flows over smooth surfaces: here the review paper of
Brereton and Mankbadi (1995) provides a useful
introduction. We also note the recent work of Tanaka et al.
(1998) who presented experimental data and low-Reynolds-
number turbulence model calculations for smooth bed
boundary layers generated by non-linear waves.

In the present paper the potential flow analysis of Rienecker
and Fenton (1981) is used to generate non-linear wave
characteristics. A high-Reynolds-number k-¢ model is
employed to compute the rough bed boundary layer and
values of f, and f, are obtained for a range of relative
roughnesses, wave height to water depth ratios, and depth to
wavelength ratios. Calculated values of the wave energy
dissipation factor are used to examine different patterns of
wave power propagation in the linear and non-linear cases.

2. WAVE MECHANICS

2.1 Linear Theory
In classical linear wave theory the horizontal pressure

gradient is equal to the unsteady flow acceleration in
accordance with the non-advective Euler equation:

a__1» @

All velocities are pure harmonic variations and hence the
phase-averaged horizontal (x-direction) velocity may be
written

u(x, z, t) = o(z) cos (kx - ot) (5)
where the vertical coordinate, z is measured from the bed.
Taking a horizontal reference position x = 0 the velocity at
the bed is obtained as

Up = am cos ot 6)

where the particle amplitude at the bed is given by

s ™
2sinh(2nd /L)
Pressure gradient at the bed is found as
(— 1 _01) = —an’sin ot ®)
p Ox )

The wave power (or mean energy flux) per unit span is
defined as

E; =}(p+%p(u2+wz)+pg (z—d))udz 9

0
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where 1 is the free surface elevation above the bed and the
overbar denotes an average over one cycle. Under linear
conditions Equation (9) is evaluated as

(1 5)e 2xd
Ee= (s et J 2 (H sinh(ZKd)) (19)

2.2 Non-Linear Theory
In the approach of Rienecker and Fenton (1981) the

governing equations are still cast in potential flow form, but
solution is now obtained using Fourier series, the only
approximation in the method arises from the truncation of the
series to a finite number of terms. In the present adaption
(due to Buss and Stansby, 1982) H, T, and d are supplied and
wavelength is a result of the calculation. The Fourier series
extends to 30 terms. Equation (4) now includes the
advective terms so that pressure gradient is determined as

an

Impermeability sets w = 0 at the bed, and further given that

N
u(x, z, t) = 3 o, (2) cos [n(xkx — ot)] (12)
n=1
it follows that
L} =1 ou (13)
ox c ot

The non-linear equivalent of Equation (8) is therefore

SLRE O

Wave power is determined directly from Equation (9).

3. THE BOUNDARY LAYER MODEL

The boundary layer is driven by the action of a pressure
gradient as determined from wave theory: (-1/p)dp/ox is
given by Equation (8) in the linear case and by Equation (14)
in the non-linear case. The difference in the linear and non-
linear treatments of the boundary layer lies in the
prescription of the differential operator D/Dt: in the linear
case we have simply

1s)

whereas in the non-linear case we may use Equation (13) to
write

D_2o
—=—+u
Dt "ot



where the vertical phase-averaged velocity is obtained from
continuity as

z z
w=—j3“—dz=lj'95dz amn
oax coat

Thus, given the two alternative definitions of Equations (15)
and (16), it is now possible to devise an otherwise common
treatment of the boundary layer.

A standard high-Reynolds-number k-¢ turbulence model
(see for example Rodi, 1993) is used to compute the
oscillatory boundary layer. Thus, the momentum equation
and k- and e-equations read

1 0 ou
e egewg] o

P£=P+i[[v+i]§£}—s (19)

0 v, | O g
—P+§|:(V+G—t]a:|—cez ? (20)

where

C, =009, C, =144,C,, =192,0, =1.0,6, =13 (1)

The lower boundary condition on the velocity field is
supplied by the standard law-of-the-wall for fully rough
turbulent boundary layers (Schlichting, 1979):

R L [i_'J +8.5 22)
u, X

s

with ¥ = 0.435. At the first turbulence node above the bed k
and ¢ are specified as

uz

ki = =55 &0 = i (23)
C% KZyt)

Zero gradient conditions are applied to u and k at the top of
the solution domain; ¢ is set to a finite value following Rodi
(1993), however the alternative use of a zero gradient
condition had a negligible effect upon results. It was found
that reduction of k to a value of 0.4 could increase friction
factors by 3 - 4%; a test of a refined law-of-the-wall due to
Sajjadi and Aldridge (1995) produced changes in f, and f. of
the order of only 0.01% (such insensitivity is a consequence
of the high k,* values typical of the present wave boundary
layers).

The numerical procedures are developed from a scheme by
Stansby (1997) which employs a staggered grid for the

turbulence field and a parabolic transformation to give high
resolution of the near-bed flow. The first velocity node is
always located to simultaneously satisfy two criteria:

30 < 7] pax <100 and o.o3s%s0.1 (24)

S

A series of numerical sensitivity tests was undertaken: the
most notable finding was that friction factors could vary by
approximately + 2% while the positioning of z, satisfied the
dual constraints of Equation (24).

4. RESULTS

The waves examined in the present study are characterized
by height to depth ratios of H/d = 0.3, 0.45, and 0.6; depth to
wavelength ratios are principally within the limits 0.05 < d/L
<0.1. Boundary layer relative roughnesses of a/k, = 30, 100,
and 1000 are considered over the full range of wave
parameters. Particular attention is paid to case of H/d = 0.6
with a/k, = 100.

Focusing initially on the wave calculation, Figure 1 shows
the linear and non-linear free surface profiles for the case H/d
= 0.6 and d/L = 0.075. The normalization employed yields
simply (n - dyH = 0.5 cos ot for the linear case, however the
non-linear profile is distinctly peaked, with (n - dyH
exhibiting a maximum of 0.81 and a minimum of —0.19 (note
that the cycle-mean surface elevation in both cases is equal to
the still water level). Figure 2 shows the corresponding
acceleration at the bed. Values are normalized by the peak
linear acceleration and hence the linear variation of (du/dt),
is obtained as —sin wt. Two curves are shown for the non-
linear case: the solid line shows (DwDt),, which corresponds
to the right hand side of Equation (14); the chain-linked line
shows (8wdt),. The non-linear curves display an initial sharp
deceleration which is succeeded by a relatively quiescent
transition to acceleration and a ‘mirror image’ sharp
acceleration. Linear (0u/dt), and non-linear (Du/Dt), provide
the input to the boundary layer computation (cf. Equations
(8) and (14)).

Wave power as defined by Equation (9) may be normalized
using p, g, and d to yield

Ef = _Ee (25)

g’y

Figure 3 shows linear and non-linear values of E¢ for H/A =
0.6 and d/L in the range 0.05 < d/L < 0.18. The linear wave
power decreases monotonically with increasing d/L, however
the non-linear variation rises to a maximum at a d/L value of
approximately 0.095 and then decreases. The non-linear
wave power is lower than the linear wave power by a margin
of between 12% and 34%.

The results remaining to be presented concern the coupled
wave/turbulent boundary layer calculation. Care has been
taken in all cases to ensure that the Reynolds number (0a’/v)
is sufficiently large as not to be a parameter of the flow.
Consider first the wave friction factor which is normally
defined in terms of the maximum bed shear stress (Equation
(1)): in Figure 4, by contrast, f, in defined in terms of phase-
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averaged T, (Ugmax 1S retained in the denominator). Highly
pronounced asymmetry is seen in the variation of non-linear
fy: the maximum value exceeds the maximum linear value
by 5%, but the magnitude of the largest negative value is
greatly reduced by comparison with the linear value. (Note
that the linear maximum is in close agreement with Equation
(3).) The phase-averaged variation of f. (which is distinct
from the phase-averaged energy dissipation rate) is shown in
Figure 5. A marked response to non-linearity is observed,
the mean non-linear value being 72% lower than the mean
linear value. Comparing Figures 4 and 5 it is seen that
fi(max.) is approximately equal to f.(mean) in the linear
case, whereas f, « f;, for the non-linear wave.

Returning now to the conventional definitions of f, and f,
(Equations (1) and (2)), Figure 6 shows f;, for a/k; = 100.
The non-linear values depart from the linear case by between
—-12% and +8%, and broadly similar results (not shown) are
obtained for a/ks = 30 and 1000. It is in the results for f, that
the most dramatic effects of non-linearity are observed:
Figures 7, 8, and 9 show the wave energy dissipation factor
for a/k; = 30, 100, and 1000. In all three cases f, attains its
lowest values in shallow water (smaller values of d/L) with
higher waves (larger values of H/d). The distributions shown
in Figures 7 to 9 may be compared with the computed linear
values of 100f, =2.41, 1.61, and 0.86, respectively.

Finally, the rate of wave energy dissipation as characterized
by f. is related to the non-dimensionalized wave power Ef.
The reduction in wave power due to bed friction occurring

over one wavelength, AE¢ is equal to (t,.u,)L. Re-

arrangement of Equations (2) and (25) leads to the following
expression for the relative decrease in wave power per
wavelength:

3 4
ABr (2 ) Momax | 1 f.
E, "(31:)[(@)‘”) (d/L) Eg @

Figure 10 shows AE¢E¢ for H/d = 0.6 and a/k, = 100. The
non-linear values are lower than the linear values by an
approximately constant margin of 47%. This finding must,
however, be considered in relation to Figure 3 which
indicates than the power of the non-linear wave is less than
that of its linear counterpart. Thus, while the non-linear
wave transmits energy at a lower rate for given wave
parameters, it also shows a lower proportional attenuation of
that power.

5. CONCLUSIONS

Bed boundary layers have been computed using non-linear
formulations for both the boundary layer and the driving
wave motion. A novel aspect of the boundary layer
treatment lies in the retention of the advective terms within a
1-D spatial discretization. Application of the non-linear
wave theory developed by Rienecker and Fenton (1981)
indicates that the power associated with a non-linear wave is
significantly less than that of a linear wave with the same
parameters. Non-linearity causes major reductions to occur
in the wave energy dissipation factor, and it is found that the
relative decrease in wave power per wavelength is
considerable less than in a non-linear wave. It follows that,
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although a non-linear wave may have a lower ‘initial” wave
power, the relative decrease in that power per cycle is also
lower.
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Symbols (not defined in text)

c wave speed, L/T

g acceleration due to gravity
k turbulent kinetic energy

p pressure

P rate of production of k



time

friction velocity, (1/p)"?

U,
z /v
o,0 velocity amplitudes
€ rate of dissipation of k
K wavenumber, 27/L; von Karman constant
v kinematic viscosity
Vi turbulent kinematic viscosity
p density
® angular frequency, 2/T
Subscripts
b bed value
max maximum
0 free stream value
1 first velocity node
1(t) first turbulence node
1.5}
— Non-linear
1l - Linear
--- Still water level

(eta-d)/H

Figure 1. Wave profiles (H/d=0.6 , d/L=0.075)
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Figure 2. Wave acceleration at the bed
(H/d=0.6 , d/L=0.075)
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Figure 3. Normalized wave power (H/d=0.6)
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Figure 4. Phase-averaged wave friction factor
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(atk =100, H/d=0.6 , d/L=0.0518)
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Figure 5. Phase-averaged wave energy dissipation
factor (a/k =100, H/d=0.6 , d/L=0.0518)
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Figure 6. Wave friction factor, a/ks=100
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Figure 7. Wave energy dissipation factor, a/ks=30
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Figure 8. Wave energy dissipation factor, a/ks=100
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Figure 9. Wave energy dissipation factor, a/k.=1000
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Figure 10. Relative decrease in wave power
per wavelength (H/d=0.6 , a/ks=100)



