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ABSTRACT

The frozen bubble size distribution, resulting from
the break up of an air bubble injected into a fully de-
veloped region of a high Reynolds number turbulent
jet has been measured using a Phase Doppler Parti-
cle Analyzer (PDPA). It is shown that the shape of
the distribution depends on € and on initial void frac-
tion, . However, when the bubble’s diameter is non-
dimensionalized with the Sauter Mean Diameter, Das,
of the distribution, the data is shown to collapse onto
a single distribution, independent of € and «.

INTRODUCTION

The droplet size distribution function resulting from
turbulent break up has been largely studied since the
initial work of Kolmogorov (1941). Statistical ap-
proaches have been used to obtain the probability dis-
tribution of droplet sizes in turbulent break-up pro-
cesses (Cohen,1991), (Longuet-Higgings, 1992), (Brown
and Wohletz, 1995) and (Novikov and Dommermuth,
1997) among others.

The objective of this work is to obtain detailed exper-
imental measurements of the probability density func-
tion of the droplet sizes resulting from the break-up
of an immiscible fluid injected into a turbulent flow of
known characteristics. In order to isolate the problem,
and to prevent the additional complexity introduced by
the use of solid surfaces or any other moving surfaces to
generate the turbulence, we selected to study the tur-
bulent break-up by injecting air bubbles into the fully
developed turbulent region along the central axis of a
high Reynolds number water jet (the experimental fa-
cility has been described in detail elsewhere, Martinez-
Bazén et al., 1999a). Through the use of Phase Doppler
Techniques (PDPA) and image processing, we measured
the transient pdf as well as the frozen pdf of the bub-
bles sizes resulting from the turbulent break-up over a
wide range of initial bubble sizes and turbulent con-
ditions characterized by the Turbulent Kinetic Energy
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Figure 1: Time record of bubbles generated by a water
jet. R.=53,000.

(or the dissipation rate, €) of the underlying turbu-
lence. The measurements of the transient bubble size
pdf were then used to evaluate the various elements
comprising the existing break-up models such as the
break frequency g(D.) (Martinez-Bazéan et al., 1999a)
and daughter droplets pdf f(D,D,) (Martinez-Bazan
et al., 1999b) occurring from the break-up of a mother
bubble of size D,. The purpose of this paper is then to
provide the fundamental knowledge of the characteristic
properties of the frozen bubble size pdf achieved once
the break-up process has concluded and its dependence
on the fluid’s properties (surface tension, viscosity and
density ratio between the two fluids), flow properties
(€), and initial concentration of the bubbles in the flow
(void fraction, «).The experimental measurements of
the frozen bubble pdf are used to compared with the
results obtained using the models for the break-up fre-
quency and for the daughter bubbles pdf described in
Martinez-Bazan et al. (1999a) and (1999b).

INTER-ARRIVAL TIME BETWEEN BUBBLES
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Figure 2: Inter-arrival time pdfs of different classes of
bubbles. R.=53,000.

In addition to study the characterization of the break-
up process and the time-averaged bubble size pdf de-
scribed in the introduction, we have also analyzed the
time series of the bubbles measured by the PDPA. Since
we are able to measure not only the size of the bubbles
crossing throughout the probe volume but also their
velocity and the arrival time, we can compute the time
and, consequently, the distance separating two consecu-
tive bubbles of the same size. Therefore we can analyze
the fluctuations of the concentration of bubbles and its
dependence on the bubble size, D, dissipation rate of
TKE, €, and initial void fraction, . Figure 1 shows a
plot of a time series data of the bubble size diameter. It
looks as if could be some clustering of occurrence times
of the bubbles. This information can be very useful in
order to study clustering events of bubbles of different
sizes or infer the formation frequencies of bubbles if they
are responding to certain frequencies of the flow. It is
expected that bubbles of similar diameter will behave
similarly in terms of formation and dispersion through-
out the spray. If the bubble’s Stokes number, defined
as

(1)

where D is the diameter of the bubble, u’ and § are the
characteristic velocity and length scales, and v is the
kinematic viscosity, is small in the range of bubble size
of interest here, the effect of any clustering in the time
series will be only the consequence of the break-up pro-
cess.

The possible clustering shown in figure 1 by the con-
centration of a large number of bubbles within some in-
tervals of time may indicate the presence of some kind
of time correlation or it may be just the consequence of
a random occurrence. In the analysis of the bubble-size
probability density functions, the time dependence of
the process is missing. Here we want to present some
experimental measurements of the time series to estab-
lish if the break-up of bubbles by a turbulent flow con-
tains some sort of time-correlated behavior.

In order to look for any possible time correlation
in the break-up of bubbles, we should subdivide the
bubble sizes in classes which might behave equally. For
this purpose, the size distribution was divided in five
size-bins, 3um < D < 20pm, 40um < D < 60 um,
8pum < D < 100pm, 120pum < D < 200 pm, and
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Figure 3: Pdfs of the normalized Inter-arrival time, t/tm
(tm= mean inter-arrival time) of different classes of bub-
bles. R.=53,000.
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Figure 4: Evolution of Mean Inter-arrival time with the
local convective velocity, U. The Reynolds Number of the
jet has been varied from 32,000 to 60,000.

200 um > D. The time separating the arrival of two
consecutive bubbles which belong to the same class was
recorded. This provided information on the temporal
variation of concentration of bubbles of different sizes as
explained above. The probability density functions of
the inter-arrival time corresponding to four of the size
bins are given in figure 2 for the case of Re=53,000 and
fixed flow rate of air. The distribution corresponding
to the fifth size-bin, 200 um > D, is not represented
due to the very small number of bubbles collected in
this particular bin. The inter-arrival time pdfs have
been plotted in a log-linear scale to highlight the fact
that they are exponentially distributed. Notice that
for the four size-bins presented, the probability of the
inter-arrival time between two consecutive bubbles in-
creases as the inter-arrival time decreases. There is not
a predominant frequency (or time) at which bubbles are
produced. Therefore the inter-arrival time pdfs do not
show a high concentration of bubbles at that character-
istic frequency. Imagine, for example, a flow in which
bubbles of size D are formed at a fixed frequency of 100
Hz. If we calculated the pdf of the time between two
consecutive bubbles of size D1 we would find a strong
peak in the distribution for a value of ¢t equal to 10 ms.
Although the data presented in figure 2 correspond to
an intermediate Re = 53,000, it can be clearly seen
that the pdfs follow exponential distributions of differ-
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Figure 5: Evolution of the Inter-arrival time pdf of bubbles
of size 40 um < D < 60 um with the Reynolds Number.

ent mean value, ¢, = 1/A. An exponential distribution
is given by the following equation,

PDF(t)=Xe ™", (2)

where t,, = 1/X is the mean as well as the root-mean-
square value of the distribution. The slopes of the tails
represent the mean rate of arrival of bubbles of each
size class. Note that we are able to represent with a
unique distribution the pdf of the dimensionless time
= t/tm = A t,

PDF(t*) = ™" . (3)

The probability density functions of the inter-arrival
time, normalized by the mean value, t* = t/tm = A t,
for the above cases has been represented in figure
3. As indicated by equation 3, when using the non-
dimensional variable, t*, the pdfs(t*) follow the same
exponential distribution with slope -1. Since the ex-
ponential distribution provides the probability for the
time between successive events occurring in a Poisson
process, as one would expect, it appears that the pro-
cess of formation on bubbles by a high intensity homo-
geneous turbulence is a random process which can be
well represented by a Poisson distribution. This result
would indicate that individual bubbles within the tur-
bulent jet act independently of each other and, there-
fore, the movement of one of them is not conditioned
by the neighboring ones. In a more dense case, where
the particle’s movement may influence the others, the
exponential approximation may not apply.

Effect of the Turbulent Kinetic Energy on the
inter-arrival time.

The time between two consecutive particles which be-
long to the same size-bin can be defined as:

1
At = CU A’ (4)
where Ci = number of particles / Volume and Uj are the
concentration and velocity of a bubble sized in class 1,
and A is the jet cross-section. Therefore, the inter-
arrival time, At;, increases as the concentration, C;,
and the velocity, Ui, decreases.
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Figure 6: Evolution of the normalized Inter-arrival time
pdf of bubbles of size 40um < D < 60pum with the
Reynolds Number.

Figure 4 shows the evolution of the mean inter-arrival
time of the five bubble size-bins defined above for vari-
ous flow conditions. As the value of the mean velocity
of the jet, U, becomes larger, the Reynolds number of
the jet increases and consequently so does the value
of the dissipation rate of turbulent kinetic energy, e.
Therefore, in addition to increasing the velocity of the
bubbles, Uj, the number of bubbles may increase as
well due to the break-up since the turbulent kinetic en-
ergy of the flow is larger. This is true for bubbles of
small size which belong to class 1, (o), class 2, (O),
and class 3, (¢), while large bubbles within class 5, (¥),
increase their inter-arrival time since, although their
velocity increases, this type of bubbles are broken as ¢
is increased. Bubbles of size class 4, (A), lessen their
inter-arrival time until a point where the break-up ef-
fect is dominant and it starts increasing due to fact
that the number bubbles of this class diminishes. The
behavior of the standard deviation of the inter-arrival
time is identical to that of the mean value. In fact, it
has been found that the ratio of the rms to the mean
value, t'/tm, is unity in all cases as it would be expected
if the inter-arrival pdfs were in fact exponential distri-
butions.

To study the variation of the inter-arrival time with
respect to the Reynolds number of the water jet, or
similarly with respect to €, which is the same in this
case since the Re is varied by changing the velocity at
the exit of the nozzle, we have plotted in figure 5 the
pdfs of the inter-arrival time of bubbles of size class
2, 40pm < D < 60pm, at three different values of
the Reynolds number. The results are consistent with
those shown in figure 4. As Re is increased, the inter-
arrival time of the class 2 bubbles decreases since their
convective velocity is faster and more and more bub-
bles are produced due to the break-up of larger ones.
Selecting a non-dimensional variable of time, t/tm (tm
is the inter-arrival mean value), the probability density
function, pdf(t/tm), has a self-similar behavior that can
be perfectly represented by an exponential distribution,
pdf (t/tm) = exp[—t/tm], as shown in figure 6. The
self-similar behavior is independent of the Reynolds
number and of the diameter of the bubble, and the pos-
sible clustering (if any) mentioned in the beginning is,
therefore, the product of a random process.
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INTER-ARRIVAL DISTANCE BETWEEN BUBBLES

The properties of the time between two consecutive
bubbles, explained in the previous section, are very in-
teresting. Another important aspect of the process is
the knowledge of the concentration of bubbles, in other
words, the knowledge of the distance between two con-
secutive bubbles which belong to the same bubble size-
class. The distance between two consecutive bubbles
of the same class is calculated from their corresponding
inter-arrival time, Ati, and their convective velocity,
Ui, as: )

Ci A~ ()

The probability density function of the distance be-
tween two consecutive bubbles of the same size fol-
low the same characteristics as those mentioned for the
inter-arrival time. As would be expected, since bub-
bles of the same size move at the same velocity, the pdf
of the inter-arrival distance of bubbles within the same
class follows an exponential distribution with an inten-
sity parameter, A, which only depends on the number
(concentration) of particles of a certain class “”, Ci.
Figure 2, in the previous section, shows that the steep-
est slope of the inter-arrival time pdfs corresponds to
the bubble-size class 2 (40 pm < D < 60 pm), followed
by bubble-size class 3 (80pum < D < 100 pm), bub-
ble size-class 4 (120pm < D < 200 pm) and, finally,
the least steep one corresponds to bubble-size class 1
(3pum < D < 20pum). The same trend is appreciable
for the pdf s of the inter-arrival distance (not shown due
to space limitations in this paper), Al = A (t; Uj), in-
dicating that the convective velocities of all bubble-size
classes, Uj, are the same and equal to that of the mean
flow.

From the above results on the inter-arrival time an
inter-arrival distance, we observe that the bubbles are
not formed in a predictable fashion but, instead, they
are created and dispersed in a random way. Edwards
and Marx (1995a) developed a theoretical framework
for the analysis of the time-based statistics of sprays.
Based on their approach, the measured bubbly jet be-
haves as an ideal spray driven by many superposed
Poisson processes (of bubble sizes), each one charac-
terized by a continuous intensity function. Therefore,
and establishing an analogy with the properties of an
tdeal spray (Edwards and Marx, 1995b), the character-
istics of the family of bubbles formed by the break-up of
a volume of air introduced into a turbulent water flow
are the following:

- The bubbles are modeled as non-interacting particles.
The effect of bubbles collision is negligible. Individual
behavior of different bubble-size classes is independent
on each other.

- Each of the particles carries a set of marks that repre-
sent the characteristic of the bubble being considered,
i.e., velocity, size, etc.

- The bubble field is not highly ordered. Therefore it is
in some sense random.

- The statistics of the bubble field are not affected by
events in the past or in the future, only by the present.
This means that the probability of finding a bubble at a
certain location at a fixed time is only a function of the
location and the time and not whether others bubbles
exist nearby.

Al =A (5 U)
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Figure 7: Frozen bubble size pdf for various Reynolds
numbers of the submerged water jet.

All bubbles, produced by the break-up of an air mass
injected into a turbulent water jet, are created and
transported downstream in the same way. The pdfs of
the inter-arrival time or distance between two consecu-
tive bubbles of the same class follow the exponential dis-
tribution, characteristic of steady state case, developed
by Edwards and Marx (1995b). Therefore, all bubbles,
in the range of bubble size and jet Reynolds numbers
presented here, feel the influence of the water jet which,
at its axis, can be characterized as isotropic and homo-
geneous turbulent flow. Measurements at the edge of
the water jet would indicate a preferential concentra-
tion of those bubbles transported by large scales. These
results would be shown in the above pdfs as a strong
deviation from their exponential distribution. Similar
type of measurements have been presented by Edwards
and Marx (1995b), for very small particles, which fol-
low the flow, measured in the internal shear layer of a
kerosene spray flame.

DEPENDENCE OF THE FROZEN BUBBLE SIZE
PDF ON ¢

The measured frozen bubble size pdfs are shown in
figure 7. These measurements were obtained by fixing
the injection flow rate of the air while systematically
increasing the Reynolds number of the water jet. Each
one corresponds to a given jet Reynolds number, which
in turn represents a certain value of € at the injection
point. For convenience, since the diameter of the wa-
ter nozzle, Dy, and the air injection point, X/D; = 10,
have been kept constant, the Reynolds number of the
submerged jet, Re = UU—VDL, will be used as a parameter
to indicate increasing levels of turbulent kinetic energy
existing at the bubble’s injection point. The first im-
portant conclusion, evident from these results, is that
the shape of the bubble size pdf strongly depends on
the turbulent kinetic energy (or dissipation rate €) of
the underlying turbulence. As the value of € at the
air injection point increases, the lump of air injected
into the turbulent jet is subjected to stronger turbulent
stresses. Consequently the value of the critical bub-
ble’s diameter, D, decreases. This result is apparent
in figure 7 where it is seen that as the Reynolds number
is increased the pdf becomes narrower, indicating that
the large bubbles have been broken, generating, a large
number of small ones.



0.1 prerrprrrrrr

: Re= 41000
. — - Re= 51436

L5 - e Re= 02038
0.01 ]/ \ .......................... z
5 ~\\ 5
0.001 f-eeer ‘\\ .......................................... ]

0.0001 A l\l\;i M,

? ‘y/xl'_ \‘\[{’V\"V\M --:
[ ) ]
SO IO IO OO 1 O Y

0 50 100 150 200 250 300 350 400
Diameter (Lm)

PDF (D)

rd
e
L

PRI

Figure & Evolution of the bubbles size pdf with the
Reynolds number. Q. = 3.6 ml/min.

10 g

Re= 41000
—— -Re=51436

¥ — = - Rom g3038

N

001 ¢

TR

PDF (D/D,,)
=]

L

0.001 JISTEINEN NETT Rt
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To study the evolution of the shape of the bub-
ble size pdf with the turbulent stresses acting on the
surface of the bubbles, we conducted a series of ex-
periments where € was varied while keeping constant
the flow rate of air injected into the flow. The water
jet Reynolds number was increased from R. = 28,000
to Re = 93,000 for three different values of the flow
rate of air, Q. = 3.6 ml/min, Q, = 7.25ml/min, and
Q. = 34.35ml/min. The experimental measurements
corresponding to the lowest flow rate of air are pre-
sented in figure & where for simplicity we have repre-
sented the bubble size pdf for only three values of the
Re. The slope of the exponential tails of the pdfs in-
creases with the Re, a consequence of the decrease of
the largest bubble size with Re. In order to represent
the bubble size pdf in non-dimensional variables, we
chose Daz as the normalization bubble’s diameter and
we defined D = D/Daz. The probability density func-
tion of D, pdf(D), for the same experiments previously
shown in figure & are given in figure 9. It is very im-
portant to remark that all the pdfs(ﬁ) collapse on a
single curve, showing that the slope of the tails of the
bubbles size distribution is just a function of the maxi-
mum bubble’s diameter, characterized in these cases by
Daz. The same type of behaviaor, although not shown
here, has been observed for the other cases tested at
Qs = 7.25 ml/min, and Q. = 34.35 ml/min.
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Figure 11: Bubble size pdf of D = D/Ds,. R, = 54036.

DEPENDENCE OF THE FROZEN BUBBLE PDF ON
THE INITIAL VOID FRACTION, «

The effect. of the initial air void fraction, o = Q./Qw,
on the shape of the frozen pdf is shown in figure 10.
These pdfs correspond to a representative intermediate
jet Reynolds number of R. = 54,036, varying the void
fraction by nearly two orders of magnitude. Qualita-
tively, the observed effect of increasing the void fraction
appears to be very similar to the effect of decreasing the
value of the dissipation rate. The slope of the tails of
the pdfs increase as o decreases. Although the effect
of o on the shape of the pdfs is noticeable, it is not as
strong as the effect of ¢ discussed earlier. As was the
case in the evolution of pdf with ¢, the pdfs(f)), where
D= D/Daz, also collapse in a single, self-similar curve
showing that Das is the only parameter needed to de-
scribe the behavior of the frozen bubble’s size pdf, see
figure 11.

The possible causes of the changes in the pdfs with o
are coalescence, modifications in the turbulent energy
spectra due to the presence of the bubbles which trans-
late into lower values of the €, increasing therefore the
value of the critical diameter, Dc « (0/p)*/® €72/%, and
consequently the value of D4z, or a combination of
both effects. To account for the effect due to changes
in € the energy spectrum was measured using hot film
anemometry, at a point downstream in the jet where
the break-up takes place, radially displaced a distance
close to the jet’s centerline but far encugh to avoid any
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lump of air, D,.

contact of the bubbles with the probe. Therefore, if the
energy spectrum was affected by the bubbles, an indi-
rect effect at the measuring point would have been de-
tected. We are more inclined to think that the changes
in the pdf(D) with initial air void fraction are a conse-
quence of the memory of the initial conditions. As the
initial void fraction, «, increases, the initial lump of air
immersed into the flow is larger and consequently its
break-up frequency is smaller as shown by Martinez et
al. (1999a). Since the dissipation rate of turbulent ki-
netic energy, €, decreases in a jet with the downstream
distance, the bubbles encounter regions of lower € as
they are transported by the mean motion of the flow.
Therefore, the measured pdf is a frozen one which did
not have time to reach an equilibrium during the resi-
dence time of the bubbles within regions of nearly con-
stant €. This effect is shown in figure 12 where we have
presented the frozen pdf (D) obtained with our break-up
model, described in Martinez et al. (1999b), for three
different initial bubble’s diameter. Notice the similar-
ity between figure 10 mesured experimentally and figure
12 obatined with our mode. As the size of the initial
lump of air,D,, increases, the frozen pdf(D) becomes
wider producing, therefore, larger bubbles. An impor-
tant issue to be considered in the model is the question
of binary or tertiary break-up. Figure 12 shows that a
model based on a binary break-up process will result in
a much wider frozen pdf(D).

Experimental evidence of the frozen pdf (D) is shown
in figure 13 where we have plotted the evolution of the
ratio of root-mean-square to the mean values of the
measured distribution with the jet’s Reynolds number
at three different values of Q.. The value of Drms/Dmean
decreases with Re until it reaches a constant value of ~
0.54 which is independent of R. and Q.. These results
show that at high Re, at which the break time is shorter
than the residence time, the obtained pdf (D) has time
evolve to the equilibrium one. On the other hand, at
lower values of Re, where the residence time is shorter
that the break-up time, the measured pdf(D) have been
frozen due to the decrease of the local value of €

CONCLUSION

We have studied the shape of the bubble size pdf re-
sulting from the turbulent break up of a continuos air
jet injected into a fully developed region of a turbulent,
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axisymmetric water jet. The frozen pdfs are shown to
be strongly dependent on the dissipation rate of tur-
bulent kinetic energy of the underlying turbulence, e,
and on the initial air void fraction, a. Furthermore,
it has been found that when the bubble’s diameter is
made dimensionless with the Sauter Mean Diameter of
the distribution, Ds2, the pdfs collapse into a single,
universal function, independent of € and of a.
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