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ABSTRACT

A complete set of constraints is proposed to force a
high Reynolds number turbulence model to correctly predict
the boundary layer behaviour whatever the pressure gradi-
ent and the Reynolds number. The constraints are general
and are presently applied to a two-equation model, using the
Boussinesq assumption together with new forms of the in-
homogeneous terms.

INTRODUCTION

For aeronautical applications, turbulence models are
first asked to correctly predict wall values i.e. skin friction
and wall heat flux. For high lift configurations, the response
of the boundary layer to a positive pressure gradient and sep-
aration are key challenges.

Attention will be restricted here to incompressible
flows. The velocity profile for a two-dimensional boundary
layer, is plotted in wall variables in figure 1 where u; is the
friction velocity uz = /Ty /p and v the viscosity. The skin
friction coefficient is directly related to the maximum value
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layer (ZPG), the wake is quite small and the logarithmic re-
gion extends with the Reynolds number. A good prediction
of the skin friction coefficient whatever the Reynolds num-
ber requires that

- the near wall model provides the correct intercept for
the logarithmic region,

- the slope of the logarithmic region is correct,

- the wake is well reproduced.

For accelerated flows (FPG), the wake slightly de-
creases so that the above constraints nearly guarantee the

since =, /g—f-. For a zero pressure gradient boundary
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Figure 1. Boundary layer profile in wall variables for various pres-
sure gradients

correct prediction of the skin friction coefficient. For
strongly accelerated flows, the prediction of the relaminar-
ization has to be provided by the near-wall model.

For decelerated flows (APG), the logarithmic region re-
mains but decreases as the wake extends. The model has
to predict the correct slope of the logarithmic region, again
in order to provide good predictions whatever the Reynolds
number, and to reproduce the large wake region.

Moreover, a model which is able to reproduce the
wake of zero-pressure gradient and adverse pressure gra-
dient flows is expected to correctly predict airfoil wakes
as well as mixing layers which closely resemble these two
flows.

Therefore, the strategy is to represent the evolution of



the boundary layer through simple constraints and to deter-
mine the model constants from these constraints.

PROPOSED MODEL FORM

The paper will be restricted to two-equation models,
using the eddy-viscosity assumption or Boussinesq rela-
tion. Moreover, only the high Reynolds number form of the
model will be discussed, the near wall modelling will not be
addressed.

With the Boussinesq assumption, the role of turbulence
models is to determine the eddy viscosity, i.e. mainly to
evaluate a turbulence velocity scale and a turbulence length
scale. The turbulent kinetic energy transport equation, de-
rived from the Navier-Stokes equation, requires little mod-
elling and can provide the velocity scale. The length scale
equation is more puzzling and is usually blamed for the
model drawbacks.

For homogeneous flows, the turbulent kinetic energy
transport equation requires no modelling

Dk
—=P,—¢ 1
D = Fe (¢))

P, stands for the turbulent Kinetic energy production rate and
¢ for the dissipation. The standard form of the dissipation
transport equation

De €
'b—t- = (CEIPk - Ceze) E (2)

yields predictions in good agreement with Roger’s et al.
(1986) DNS. Moreover, the transport equation for any
length-scale determining quantity ¢ = k™€" can be deduced
from the above equations and reads
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The problem is thus to model the extra terms due to
inhomogeneity. The exact form of the turbulent kinetic en-
ergy transport equation shows that the extra term is a diver-
gence. Therefore, following Yoshizawa (1985), the turbulent
Kinetic energy transport equation is modelled as

Dk . V¢ Ve k
= —p,—e+div | — _+Z
- =P €+ div " gradk + grade] 3)

The length scale equation has been written a priori for
¢ = k™¢". In a way similar to the k equation, the diffusion
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flux involves two terms. There is no proof from the exact
equation that inhomogeneous terms are of divergence form.
Moreover, it is well known that when a length scale equation
is expressed in terms of another length scale determining
variable, e.g. when the g-equation is written in terms of ®,
dot products of gradients appear. Therefore, the following
form is proposed for the length scale equation

%9 (CorPc— Cye) %+d1v[6vt_%
- grad¢

+o¥ gradg- grad¢+ B gradk 723 gradk- gradk

It can be easily checked that, starting from (3, 4), the
transport equation for another length scale determining vari-
able y = k%€ (b # 0) can be deduced. This new equation
has the same form as (4) and the coefficients (c,C,,B,Y)
of the y-equation can be directly related to the ones in the k
and ¢ equations. It can be mentioned that o changes with
the length scale determining variable.

As the set of equations (3, 4) can be used for any length-
scale determining variable, € will be chosen from now to ex-
press the various constraints the model has to satisfy. The
final choice of the length scale determining variable will be
dictated by numerical stability arguments. On the one hand,
dot products of gradients may lead to numerical stiffness and
a change of variable allows to get rid of some of them. On
the other hand, only the high Reynolds number form is ad-
dressed here; near-wall treatment will favour length scale
determining variables which have a fair behaviour in the wall
region.

At last, the model has to be completed with the expres-
sion for the eddy viscosity v;
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CONSTRAINTS
Strategy

As mentioned above, the strategy to determine coeffi-
cients is to look for all the constraints the model has to sat-
isfy. As these constraints are simplified representations of
the physics, their pertinence has to be checked. Therefore,
the constraints have been derived for the general model (3,
4, 5) which involves all classical turbulence models such as
k—¢€, k— o, k— ¢ or k— L models. Thus, it has been possible
to check the pertinence of these constraints by comparing the
behaviour of the models and the expected behaviour accord-
ing to the constraints. The constraints for the general model
are quite complex and can be found in Catris and Aupoix

dk+ —’— L grade|(4)



(1999). Only simplified expression for the k — € model will
be given here for the sake of clarity.

Isotropic decay

The simplest constraint is the classical decay of
isotropic turbulence which yields the bounds (Aupoix, 1987)
1.7<C, L2,

Logarithmic region for a zero pressure gradient
boundary layer

For a zero pressure gradient boundary layer, the total
(laminar + turbulent) shear stress is constant in the near-wall
region. In the logarithmic region, the laminar shear stress
is negligible. Although its validity in the logarithmic region
is questionable, Bradshaw’s assumption is classically used
to link the turbulent kinetic energy to the turbulent shear as
— < WV >=u? = 2a1k. Using wall scaling, i.e. making
quantities dimensionless with u; and v, it yields k* = 2%7
For standard models in which G — o, neglecting advection
yields an equilibrium between production and dissipation in
the k-equation (3) which gives e+ L where x is the slope
of the logarithmic region. This equilibrium still holds if Gk
is finite. Substituting into the dissipation equation leads to

=1
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Logarithmic region for a boundary layer with mod-
erate pressure gradient

Experiments show that the slope of the logarithmic re-
gion is unchanged in presence of moderate pressure gra-
dients. From the momentum equation, the dimensionless
shear stress now reads

<V >t=1+ptyt pt= 7

puf dx

Following Huang and Bradshaw (1995), all quantities are
expanded in terms p* as

Kkt =kf+pthf et =ef +pret ikt = ¢+ pryt

The analysis only holds for moderate pressure gradients i.e.
when |pty*| < 1. Because of the form of the transport
equations (3, 4), the analysis is somewhat more tedious than
in Huang and Bradshaw. The zero pressure gradient bound-
ary layer case investigated above is retrieved as zeroth order
solution.
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Figure 2. Prediction of the logarithmic region by various turbulence
models for the positive pressure gradient experiment of Skare and
Krogstad

The first order solutions have the following form
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where x; should be null.

Figure 2 shows an example of the constraint validation.
Predictions of Smith (1995) k — L model, Wilcox (1988)
k — o model, Cousteix et al. (1997) k — ¢ model and Chien’s
(1982) k — € model are compared for the equilibrium bound-
ary layer case investigated by Skére and Krogstad (1994).
The k — ® and k — L models which yield small values of x;
fairly reproduce the logarithmic region while the k£ — € or
k — @ models, which yield large values fail.

Square root region

For boundary layers submitted to strong positive pres-
sure gradients, Townsend (1976) has brought into evidence
the existence of a region where the shear stress varies lin-
early while the velocity varies as the square root of the



wall distance, which we shall refer to as the square root
region. This region lies above the logarithmic region, i.e.
where pty* >> 1. The variables in the square root reglon
are written in dimensionless formas # = ;0= ; = ﬂi— k=
k..g=
utpt’ u1p+
\7,% =3.
Power law solutions are looked for. The variables are
expanded as

(V= ;;'—, while equation (7) reduces to

Substituting these expressions into equations (3, 4, 5), the
balance of the exponents is fulfilled when p = %,q =1 and
r= % Any model which is dimensionally consistent, as the
classical models and the proposed model, satisfies the power
law relations in the square root region.

The solution reads
2_ _ Q-CyR 0-C,R
Ak - (Q Cez ) = A €~ € (9)
3 _ 3 3
0= Vi +[3 2+ &— 0 + O R= S T 2o

Most models cannot find such a solution since they give neg-
ative values for A, and Ag. This point has been arrived at in-
dependently by Rao and Hassan (1998) for the £ — w model.
Moreover, expected values are known: A, = % and Ay ~ 2‘%1

Behaviour at a laminar/turbulent interface

At the edge of a turbulent region, the model must pre-
dict smooth behaviour of the mean flow as well as of the
transported quantities. Otherwise, the prediction may be too
sensitive to free-stream values. The analysis is similar to the
one proposed by Cazalbou et al. (1994).

The analysis is performed for a thin layer (boundary
layer, jet wake...). A self-similar form near the boundary
(y = 9) is assumed for the longitudinal velocity profile as

u=Um—wF'M) n= \/Z*_s (10)
u

where prime denotes differentiation with respect to n The
vertical velocity profile can be deduced with the help of the
continuity equation.

Similarly, self similar solutions are assumed for the tur-
bulent kinetic energy and its dissipation rate

3
=uKM) e=ZEM) a1
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The behaviour near the turbulent region edge is studied.
Therefore, the following change of variable is used: A =
Text — N and solutions are sought for as

F(M) = Fox—AA® K(M) =B\ E(m)=CA°

where A, B and C must be strictly positive and a smooth be-
haviour is obtained only when

a>2 b>1 c¢>1 (12)

so that all quantities and their derivatives tend towards zero
at the interface.

Leading order terms in the momentum equation give the
first equality

2b—c—1=0 (13)

The balance of the turbulent kinetic energy and dissipa-
tion rate transport equations are chosen so that the produc-
tion is negligible compared to the advection and the diffu-
sion. This leads to the constraint

b<2(a-1) (14)

The balance of the' advection and diffusion terms in both
transport equations yield the following relations

=[1+(a— 1)0ke]5+—20kk (15)

1b? =c[(a—1)—b<—6_1;+ﬁ> —c($+a)] (16)

The exponents a, b and ¢ can be deduced from equations (13,
15, 16). Because of equation (16) which is quadratic in b
when 7y # 0, second order equations are obtained for each
coefficient. All the above equations and constraints (13-16)
have been obtained assuming that a,b and c are positive.
Negative values for a,b and c are not consistent with the
prescribed edge values for the velocity, the turbulent kinetic
energy and its dissipation rate. Therefore, to obtain the cor-
rect model behaviour, there must exist at least one positive
value for a, b and c and all positive solutions must satisfy the
constraints (12, 14).

It has been checked that the k — € and k — @ models sat-
isfy the constraints, while the k — ® model is known not to.



o Ry=4981
o Rex13052

0.8+

~<u'v’>"0.6-

0.4+

0.2+

Figure 3. Comparison of equation (18) with the zero pressure gra-
dient boundary layer experiment of Smith and Smits

Wake region

A way to optimize the prediction of the wake region has
also been looked for. Self-similar solutions of the form pre-
sented above (eq. 10, 11) are used. Following Coles (1956),
the velocity profile can be expressed as

Uext—u_ l
T ox

Y

s an

Inn+ %ZC()Sz (En)

2 n=

Uz

where the wake strength IT is related to boundary layer inte-
gral thicknesses through

Assuming self-similarity, a form for the Reynolds stress
profile — < u'V' > /u?(n) can be deduced from the momen-
tum equation. The rather complex formulation is well ap-
proximated by

dx

—<u'v'>_ *Uext 2 T * _
—aZ - (1 +B -;T—n cos (En) Br=
(18)

This simpler form is in good agreement with experiments,
as shown in figures 3 and 4.

The model equations (3, 4, 5) can also be written in
self-similar form as

_8 dUext
Ur

—2B*K — (],1;+2;3* nK'=NF"—E  (19)
d (N, NK
+i (&x+3LLE)
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Figure 4. Comparison of equation (18) with the adverse pressure
gradient boundary layer experiment of Skére and Krogstad
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where N is the dimensionless eddy viscosity V; /(48) which
can be deduced from (17, 18) and F; = F(1). The above
set of equations can be used to optimize the constants with
reference to self-similar solutions.

A simple way to deal with the above system of equa-
tions is to use the Bradshaw assumption — < ¥'v' >=2a;k
which is in good agreement with experiment as shown in fig-
ure 5. Thus, K is known analytically and E can be deduced
from the eddy viscosity expression. As only approximate
expressions for F/,K,E and N are obtained, the model co-
efficients can thus be estimated by minimizing the error on
the balances of equations (19, 20) for a given range (say
0.2 <1 <£0.8) where all the assumptions hold.

APPLICATION TO MODEL DERIVATION

The above physical constraints are general. Their
derivation has been restricted to the proposed model, with
an eddy viscosity assumption. The key problem comes
from the eddy viscosity assumption which gives, for a two-

dimensional boundary layer, — < &'V >=2a;4/ %k. In the

boundary layer, the regions where P, = € and where Brad-
shaw’s assumption is verified are different; the eddy viscos-
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Figure 5. Comparison of the turbulent kinetic energy profile de-
duced from equation (18) and the Bradshaw’s assumption with
boundary layer experiment of Skare and Krogstad

ity assumption is thus not fully consistent with the Brad-
shaw’s assumption.

The main goal for the model is to correctly predict the
mean velocity profile, and thus the Reynolds stress — <
w'v' > and the eddy viscosity but not necessarily the turbu-
lent kinetic energy. Hence, in order to get good predictions
with an eddy viscosity assumption, k should not strictly be
the turbulent kinetic energy but just the velocity scale used
to compute the eddy viscosity. Thus, the self-similar form
proposed for k in the wake region should not be used. Simi-
larly, Ay cannot be equal to 1/2a; in the square root region.

Therefore, an eddy viscosity model can just been asked
to satisfy the isotropic turbulence decay, the slope of the log-
arithmic region for zero or moderate pressure gradients, the
slope A, in the square root region (but not Ax) and the be-
haviour at an interface. No simple analytical constraint can
be applied in the wake region, numerical optimization has to
be used. However, there is still a family of sets of constants
which satisfies all the analytical constraints. Such models
are presently being tested.

When the eddy viscosity assumption is relaxed, either
using an algebraic stress formulation or a full Reynolds
stress approach, consistency with the Bradshaw hypothesis
can be expected. However, because of the change of the con-
stitutive relation, the mathematical form of the constraints is
somehow different. Moreover, the diffusion model can be
altered to take advantage of the knowledge of the Reynolds
stress tensor anisotropy.
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