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ABSTRACT

In this paper we reformulate a homogenization of
Navier-Stokes equations in generalized form and then
according to Kolmogorov’s scaling theory make an
analysis to get a novel closure for fully developed tur-
bulence. Our research in physics is essentially different
from those available in the literature, although in some
mathematical method it follows Chacon at al (1994).
We also explore a novel method to calculate the closure
terms in homogenized quations for fully developed tur-
bulence.

INTRODUCTION

In modern mathematics, a theory has been devel-
oped called homogenization which deals with partial
differential equations having rapidly oscilating coeffi-
cients (Jikov et al. 1994). In that huge and fascinating
field of homogenization multiscale methods based on
asymptotic tools are extensively used. Typically, the
questions which can be addressed by them are of the
following form: a ‘small-scale’ structure with some form
of translation invariance (periodicity, quasi-periodicity,
random homogeneity) is prescribed. Thus, homogeniza-
tion can handle a variety of different important physical
and engineering problems.

Unfortunately, up to now, a little effort has been
made to bridge gap between these different fields of re-
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search. At this moment, we have not yet taken advan-
tage of the full power of the mathematical tools from
homogenization theory. Many known theoretical results
have not yet been used for numerical simulation of prac-
tical problems in research and industry. There seems
to be a very good chance that at least some of these
problems may be successfully solved in the near future
(Hornung 1997). Now we make an effort to explore
the homogenization theory as a new tool for studying
the fluid turbulence. In this paper we first present a
generalized formulation of homogenization of Navier-
Stokes equations with two different length scales and
then based on Kolmogorov’s scale theory give their im-
plements within the inertial range placing the analysis
as a study of the fully developed turbulence leading a
novel closure system, and finally, explore a method to
calculate the closure terms in homogenized equations
for fully developed turbulence.

GENERALIZED FORMULATION FOR HOMOGENIZA-
TION OF NAVIER-STOKES EQUATIONS

In the classic homogenization theory one assumes
that every property of the field is of the form f (x,y)
where y = z/e. Here ¢ = (z1,---,zn) is the N-
dimensional position vector of a point in Cartesian co-
ordinates and y = (y1,- - -, yn) is the vector of stretched
coordinates. One shall look for each unknown field
quantity u° (z) in the form of a doublescale asymptotic
expansion:

u® (z) = uo (z,y) + ewr (z,9) + €ua (z,y) + -

The two-scale process introduced in the partial differ-
ential equations of the problem produces equations in z
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and y variables. Generally speaking, equations in y are
solvable if the microstructure is, in some sense, periodic
; and terms u; (x,y) in the postulated asymptotic ex-
pansions are periodic in the y variable with the same
period as that of the structure. Moreover this leads to a
rigorous deductive procedure for obtaining the macro-
scopic equations (in ) for the global behavior of the
field. In homogenization it is usual to consider first x
and y as independent variables and to replace next y
by z/¢ . Applied to a function u(z,x/€) , the operator
V becomes

Vu(z,z/€) = Vou(z,y) + %Vyue(x,y).

The solution is expanded in powers of € and substituted

into the equations with decomposed derivatives . Com-
paring the coefficients of the different ¢ powers in this
equation, we can obtain the equations for the various
orders in €. The large-scale equation always emerges
as a solvability condition to some order in €. Integrat-
ing these identities over Y and proceeding further we
can get the homogenized limit of the studied equation.
The values of the coefficients in the large-scale equa-
tion are obtained in terms of the solution of the lower
order equations (Hornung 1997). In this paper we gen-
eralize the homogenization to the non-linear unsteady
Navier-Stokes equations. In a generalized homogeniza-
tion we assume that the scalar- or vector-valued field
depends not only on the slow variables = and ¢, but
also on the fast variables y = ¢ and 7 = ;‘;, where
a = (a1,--,an) = a(z,t) is a N-dimensional position
vector of properly transformed coordinates that allows
the considered field to be smooth and almost-periodic
in the y-7 variables, choice of the coordinates a (z,t)
and the value of the exponent s depends mostly on the
symmetries of the problem. Since the solutions depend
on z and t both through the fast variables and through
the slow variables, space-and time-derivatives must be
decomposed as follows:

2 =08 +e %0 tela-Vy,
V=V.+elVa-v,.

The solution is expanded in powers of € ° and substi-
tuted into the equations (with decomposed derivatives
) where the value of the exponent 3 with the previous
s in T can not be an integer. The main new difficulty
for the nonlinear equations is to find the order in € ? of
the leading term of the solution: this is often done by a
dominant balance argument in the large-scale equation
(the form of which can usually be guessed by symme-
try arguments ). The final equation, which emerges
again as a solvability condition, is still nonlinear. In
homogenization theory the multiple scales expansion is
a simple tool to obtain equations for the means when
there are periodic or quarsi-periodic oscillations. In tur-
bulence model the assumptions of quasi-periodicity can
be made on the scales in the velocity and pressure fields
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with respect to the variables y and 7. In this paper we
consider the Navier-Stokes equations with a small para-

meter € in the viscosity and initial velocity fluctuation

a . . 1
—_ v € _ € €
ErA + (u Ju ReAu + Vp
= 0, in RN x (0,7 (1)
V-u¢=0, in RN x (0,7] (2

ue(x,o)=u§g§(w)+eﬂu;§‘;’(x,§) nRY. (3)

where uz(l(;) (z,y) is almost periodic in y = £ and has

<u2(1(;) (z,y)) =0, & can be repre-
sented as é = €“vp. The values of the exponents o and
(8 depend on the considerded problems of turbulence.

We assume that the velocity u € and the pressure p°©
fields admit asymptotic expansions of the form:

Zero y-means, e.l.,

u® (z,t)

= u) (&,1) + ePugyy (2,8;9,7) + Pufy) (2,659, 7)

+e3ﬂu23) (z,t;y, 1)+,

pe(z,?)

(4)

= po) (&,t) + €’pyy (2,84, 7) + €y (z,59,7)

+€¥ plgy (2,859, 7) +- - .

and all functions wu((z,t;y,7) , Pk (T t;y,7) are
smooth and almost-periodic in the y-7 variables.

To obtain the formal equations for the terms of ex-
pansions, we derive the multiscale expansion of ex-
panded Euler operator for (u€,p°) :

a €
-§—+V-(u€®ue)+Vp l,
t
(6)
and multiscale expansion of expanded Laplacian oper-
ator for u© :

E(u ¢, p ) =Va"-

Lu® =Va" - (Au®) =Va” - (V-Vu©), (7

and multiscale expansion of Divergence operator for
€
u:

Du®=V-u°. (8)

For scales consistency, we should have § = 1 — s.
Thus, substuting the expansions (4) and (5) with the
decomposed derivatives into the operators (6), (7) and
(8), we can express the Navier-Stokes equations in the
form of multiscale expansions:

E(u ¢,p ) —€ “nwyLlu €=0, (9)

(5)



Du € =0. (10)

Substituting the expansions of the Euler, Laplacian and
Divergence operators (6), (7), (8) into the equations
(9) and (10), pulling their terms for the various or-
ders in €° to be equal to zero, we can get the formal
equations for the terms of expansions (4) and (5). For
example, if we choose 8 = % and -g—(z +u-Va =0,
introduce variables i/ N = VaT . uéi)’ those equations
can be represented as follows:

Vy . [pél) (VaT . Va)] = l/oL(i), (11)

Vy iy =0, (12)

orT
+V,, - [Péz) (Va Va)]
= vl (13)
Vy- 1122) =0, (14)
o)
@) _ .
5 TV (ugl) ®u(2))

+V, - (g @ ) ) + Vi - [pls) (Va” - Va)]

ou
+val [ P+ Ve (u@) ®u()

ot
+ Vap())
= =woL(it2), (15)
Vy - ﬁ23) =-V,- (o) (16)
8&23)

~/ ~/
9T + Vy . (U(l) ®U(3))
+V, - (a@) ®a(2)) +V,- (agg) ®a(1))

+V, - [p24) (VaT - Va)]

\v4 T 6u21) \v4 I
+ a - 8t + T ° (u(o) ®U(1))
+Vg - (uél) ®u(0)) + Vzpél)]
= UoL(i_,_g), (17)
Vy . 12&4) = “"vz . uél), (18)

+Vy, - (uéz) ®u(0))

+V - (upyy ® ufy)) +Vapla))
= wL(it4), (19)

Uy - i) = =V - Uy, (20)
y

2% 49, (it o)
+V,, - (%) ® ag4)) +V,- (agg) ® ags))
+Vy - (%) ® ﬂ(?)) +Yy- (%) © 77‘21))

+V,, - [pEG) (VaT - Va)]

Ougg
+vaT . | =81 v, . <u(0) ®u23))

ot

i (o) 1. (o)
+Vz . (U;22) ®UEI)) +V£p23)]
= wLits), (21)

Here the index % of the right side of (11), (13),
(15),(15), (17), (19) depends on the choice of the val-
ues of the exponents « for ﬁl—é =€%Yy: 1=123,
4, 5, 6 correspond to o = 2, g, %, 1, %,% respectively ;
and

Lay=0, Lz =0, Lg =0,

Lay=Vy- [(VQT +Va) 'Vy’:‘gl)] ’
L =Yy [(VaT - Va) - Vyiiy)|

L =Yy [(Va” - Va) - Vyi(y)]
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ANALYSIS FOR FULLY DEVELOPED TURBULENCE
One of the problem of our analysis for turbulent flows
is that we may approximate u by a function with mul-
tiple scales, but there are no obvious period. But in
asymptotic sense we can approximate u by a quasi-
periodic function, for which the space, time and space-
time means are defined by

<U> = lim —(i—T). / ’LL(ZL',t; yaT)dya

r— 00
B(z,r)

= 1 =
(w)y="lim T p@, r
r—oo 2TB(z,r)
It is easy to prove that if w and [---- - - | are almost-

periodic and smooth enough, then the following identi-
ties hold:

<Vy . [ ...... D =0, (22)
u
(2L 4Ty ) =0 (24)

We use the Kolmogorov’s scaling theory for fully de-
veloped turbulence, assuming that £ is the scale under
consideration, vy is the typical value of the velocity as-
sociated to scales « £ and the ‘eddy’ turnover time (cir-
culation time) associated with the scale £ : t, ;i; is
the typical time for a structure of size v~ £ to undergo
a significant distortion due to the relative motion of its
components, then the velocity field v, is scale-invariant
of exponent 8 = 1/3 : vy v €/3¢/3 and the eddy
turnover time is tp v € ~1/3p 2/3 where ¢ is the finite
mean energy dissipation rate that is independent on £
in the inertial range (Frisch 1995). So, the right choice
in the multiscale expansions for an analysis of fully de-
veloped turbulence is € = £/L, 8 = %, s=1-p8= %
The coordinate function a = a(x,t) is chosen as La-
grangian coordinate: % +u-Va=0, a(z,0) =z that
is boundary-fitted and allows the velocity and pressure
fluctuations to be almost-periodic in the y = £ and
T= Eﬁég variables.

However, we have many choices of the values of the
exponents for Elg =€ % :
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MDifa= %, %, then
limeRe «» O (€' ™%) — 0,
€—0

as £ — 0, v > 0. It is impossible physically .
(2) if a =1, then

HII(I)ERGV\O n,

as £ — 0,v — 0. In this case the system of equations
can not be closure: the equations for the lower order
terms contain the higher order terms.

(8)ifa=1%,3%,2, then

lim eRe v~ O (el_a) — 0.
€—0

the limit v — 0 is taken before the limit £ — 0.

So the right choice is & 2> 4/3.The linear scale of
the motion in which viscous dissipation occur: A =
V34 (6>_% (Frish 1995). In this paper we take o =
4/3, ie., Rie = € */3yp, then the following solvability
conditions hold:

5] Uug
(-&- + w0y + Vo) + V(o))

dug
= 5t + Yoy - Vzu(O) + Vzp(o) =0, (25
(Vm . U(0)> = Vz . u(o) = 0, (26)
ou)
1)
( ot +’U(0) . Vzuél)
a(ulyy) -
1)
= ot =+ u(o) - Vz<u21)> (27)
+<u21)> . vzu(O) + vz(?h)) (28)
= 0, (29)
(Vg - u21)> =Vg- <u21)> =0, (30)
au@) Vo v/
( ot + (o) - zu@) + u(2) + Vg U(0)
o Tury o
= —‘52—) + w0 ‘Vz(uEQQ + (UEQQ : Vzu(O)
4V, - ((u(l) ® ugl))> + Va(ply) (31)
= 0, (32)
(Vg - uEz)) =V, <u22)> =0, (33)



<6u23)
ot
+V, - <u£1) ®u22)) +V, - (uéz) ®u21))
+V2 pig)
9 (ufz)

= ot + w(o) - Vs (u23)> + (ués)) . Vm’U/(o)

+V2 - ((uyy © uly)))

92 (ug ®u;1))) +Va(Plg)
- o, (34)

+u(0) * Vali() + Uz - Val(o)

(Va - u(g)) = Vg - (u(g)) =0, (35)

When all the solvability conditions are satisfied, we
have equations:

Dy,

s+ (W @)
+V,, - [pEZ) (VaT - Va)}

= WY, [(VaT -Va) - vyagl)] ., (36)
Yy il =0, (37)
ol
0 19, - () 0%y
+V,, - (agg) ®agl))
+V, - [pég) (VaT . Va)]
= V- [(VaT -Va) -Vyﬂ&)] ,  (38)
Vit =0, (39)

o
3 -~ 1
5o+ Yy (i) ©z)

+V, - (%) ®ﬁ(2)> +V,- (a;?,) ®a21))
+V, - [p&) (VaT . Va)]

= V- [(VO,T -Va) - Vyazs)] ,

(40)

V- fifg), =0, (41)

where ﬂ'/k) =VaT. uék) .
This problem admits an unique almost-periodic so-

lution for (uék) , pék)), which depends smoothly on

y,T and the tensor Va7 - Va. So, the averaged tensors
(ué ) ®u2 j)> are the functionals of Va7 - Va, which
will be shown in the next section.

From these solvability conditions one can get the

averaged equations for (u(o) , p(o)), <(u£1)> , (pél))),

(i) s Wiay) Jand ((ufay) , Wiay?)-

We can show that <u21)> =0, (pél)) =constant.

If ((u22)> , <p22)>)and <(u23)) s <p23)))are kept in

the result and (u€) = ug +¢€ 2/3(1%2)) +€ (ué3)) is de-
noted by u, (p€) = po + 62/3<p22))+ € (pé?))) denoted

by p, then we get a closure system approximating the

fully developed turbulence with the accuracy of order
€:

-a—2+u-Va=0, a(z,0)=z, (42)
ot
0]
5%+u-Vu+Vp+V~R
= 0, u(z,0) =u®, (43)
V.u=0. (44)

where

_ 2/3
R=¢? ((uél) + 61/3ué2)) ® <ué1) + 61/311,22)))
(45)

CALCULATION OF CLOSURE TERMS IN AVER-
AGED EQUATIONS
Let

v =gy +€Puly , @ =Va - u (46)

and
pl = pé2) + € 1/32723), (47)

we can combinate the equations (36) - (39) with the
accuracy of considered problem into the equations:

oa M
BT +V, - (@' o)
+V, - [(Va - Va) p/]
= V- [(Va' Va) -V, @], (48)
V, - =0. (49)

We define /' as a vector field equivalent to ¢’ up to
a gradient of ¢, similar to a gauge transformation of
Yang-Mills kind in electromagnetics:

m'=u'—Va- Vo' (50)
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and also

' =1 -V, (Va - Va) ¢’ (51)

where ' = VaT -m/ .

According to above transformation one can lead a
new formulation of the equations (48) and (49) in a
gauge-invariant form (Wu, 1999):

om' - ~
-5 +Vy (T i)
= ——[VaT-VmVyu’] -m/

+1Vy - [VaT - Va-V,m], (52)

@ =m'+Val - Va- V' (53)
Vy - [(VaT - Va) - Vo'l ==V, -m'  (54)

p =
1 2 0y ~
s+ 5+ Yy (W)
-uVy - [(VaT - Va) - Vye'] . (55)
Due to
oy’ Al
(G + Vo (09)
—1pVy - (VaT - Va - V')
_ o, (56)
we have
T 1 2
@ = () 1)

In general, we can solve the above problem at least
numerically and then determine all the closure terms:

R =3 @u'y, (58)

However, under some working hypothesis, it is possible
to simplify notably the dependence of closure terms on
the tensor VaT - Va.

From equation (48), we have

Vy - (W eu)
+V, - [p' (VaT - Va)]
= yVy-[(VaT - Va) - V,i'] (59)

due to
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For homogeneous turbulence, the following tensor rela-
tion holds:

(@ ew)
+% (Va™ - Va) (u' - ')
= 1 (Ve Va)- (V, iy, (60)
and so we have:
(W o)

= oy (z,t)(Va” - Va)
+oz (z,t) (VaT - Va) - (VaT - Va) (61)

2
= Bi(z,t)I+ B2 (z,t) (Va - Va) (62)
Thus, the Reynolds tensor is
R = ePuwou)=e*Va T (@) Va?
€3 [y (z,t) I+az (2,t) (Va- VaT)] . (63)

Concerning the details of calculation of the closure
terms, they are discussed in the next paper (Wu, 1999) .

CONCLUSION

It has been shown that the homogenization of
Navier-Stokes equations can be used to study the fluid
turbulence. There is no doubt that this theory will yield
good turbulence models in the future.
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