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ABSTRACT

We consider the possibility of obtaining an eddy-
viscosity for large-eddy simulations by applying
Renormalization-Group methods to the Navier-Stokes
equation. We outline how the introduction of a con-
ditional averaging procedure may allow us to perform
such a calculation as an approximation, and look at
how the results of direct numerical simulations can be
used to test the assumptions made therein. Finally, we
examine and discuss the results obtained by perform-
ing a large-eddy simulation using the resulting eddy-
viscosity.

INTRODUCTION

Over a period of several years, our research in Ed-
inburgh has been concerned with the application of
renormalization methods to predict the energy spec-
trum of isotropic turbulence. In particular we have con-
centrated upon the development of Renormalization
Group (RG) techniques (McComb et al., 1992a, Mc-
Comb & Watt, 1992b) by which we may obtain predic-
tions for various parameters of turbulence, for instance
the Kolmogorov constant, and also obtain a subgrid
model for spectral large-eddy simulations (LES).

The RG approach (see, for instance, Wilson 1975) has
enjoyed a fair degree of success when applied to other
problems in statistical physics which involve a system
with no preferred length scale. However, in applying
RG to turbulence we are faced with several technical
difficulties. Indeed, as we shall argue in the following
section, the deterministic nature of the Navier-Stokes
equation (NSE) prevents us from rigorously perform-
ing one of the fundamental steps required in any RG
calculation.

Bearing these points in mind, we have recently been
using the results of numerical simulations in order to
investigate the overall feasibility of applying RG to
the problem of Navier-Stokes turbulence. Initial re-

sults from these simulations were previously presented
at the 11th Turbulent Shear Flow colloquium in Greno-
ble (McComb et al., 1997). The current paper details
the continuation of this work, both in order to probe
the fundamental aspects involved in applying RG to
turbulence, and to specifically probe the validity of un-
controlled approximations used in the theory. It further
describes the results obtained when using the RG cal-
culation to provide the subgrid model for a LES. We
begin by outlining the RG approach and its difficulties.

RENORMALIZATION GROUP THEORY

RG provides us with a method for dealing with prob-
lems involving a large range of length or time scales,
such as occur when considering critical phenomena or
turbulence, and involves, in principle at least, a rela-
tively simple procedure. First, we eliminate a range of
the shortest wavelengths in the system, their effect upon
the remaining scales being retained in average form as
a contribution to a transport coefficient. Second, we
rescale the new system so that it is defined on the same
interval as our original system. These two steps are
then repeated until the system becomes invariant un-
der the transformations, at which stage it is said to have
reached a fixed point. This corresponds to the system
having become insensitive to changes of scale (i.e. it has
no preferred length scale), as we would expect to be the
case within the inertial range of turbulence.

RG Applied to Turbulence

In order to apply RG to turbulence we work in
Fourier wavenumber (k) space and consider incompress-
ible fluid turbulence, as governed by the solenocidal NSE

(8% 4 vok?)ua(k, t)
= Masy (K) / & us(i,us(k —5,0) (1)
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where v is the kinematic viscosity of the fluid,
Magy(K) = (26) " [k Day(K) + k4 Dap(k)]  (2)

and the projector Dag(k) is expressed in terms of the
Kronecker delta dap as

Dap(k) = ap — kakslk| ™ (3)

Further to this, we also restrict our attention to sta-
tionary, isotropic, homogeneous turbulence, with dissi-
pation rate € and zero mean velocity, in which case we
may write the pair correlation of velocities as

(ua(k, tjup(k',t)) = Q(k, t = t') Dap(k)s(k + k') (4)

where Q(k,t — t') is the spectral density.

In order to apply RG to this system we first define
a maximum cut-off wavenumber ko via the dissipation
integral

oo ko
5:/ dk2uok2E(k)f_~/ dk 2vok®E(k)  (5)
0 0

where E(k) = 47k*Q(k) and Q(k) = Q(k, 0), so that ko
is of the same order of magnitude as the Kolmogorov
dissipation wavenumber k4. We then filter the velocity
field at k = k; according to

_ ) ugz(k,t)for 0 <k < ky
ua(k,t) = { ul (k, t) for ky < k < ko (©)

where k1 = (1 — n)ko and the bandwidth parameter
satisfies the condition 0 < < 1. This allows us to re-
write (1) as individual evolution equations for the u™
and ut modes,

Louy = My (uj u;_, + 2u;u:_] + ujut_]) (7)

J
Louj = M:(u;u;_J + Zu;'u:_] + ujuz_]) (8)
where Lo = 8: + wok?, and, for simplicity, all vector
indices and independent variables are contracted into a
single subscript.

Following the RG algorithm, our first step is to elim-
inate the u™ modes in (7) by solving for their mean
effect upon the remaining u~ modes. This results in
an increment to the viscosity, i.e. vo = v1 = vo + dvo.
We then rescale the basic variables so that the ‘new’
NSE, defined on 0 < k < ki, looks like the original
NSE for 0 < k < ko. A typical approach to the first
of these steps is to eliminate the high-k modes by di-
rectly substituting the solution of (8) for each u%t term
in (7). However, problems are then encountered be-
cause of coupling between the u~ and u* modes. Even
if we succeed in doing this, we immediately have the
further problem of averaging out the u* modes. As
described by Wilson (1975), such an average requires
us to average over the u? whilst holding the u~ modes
constant. Since the NSE is deterministic, such an op-
eration clearly cannot be performed in a rigorous man-
ner, as fixing the u™ also serves to constrain the ut.
To circumvent this problem, the idea of a conditional
average was introduced (McComb et al., 1992a), based
on the ansatz that a small uncertainty in the ©~ modes
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Biased Sub-Ensemble

Full Ensemble

Figure 1: Schematic illustration of how the members of
the biased sub-ensemble (RHS) are selected from the full
ensemble (LHS). The ordinate represents the value of any
variable we are using to define ‘closeness’ to a reference,
such a reference being, for instance, the real part of a
particular component of the velocity field.

will generate a large uncertainty in the u* modes. It
has recently been shown that such an assumption is not
without foundation (Machiels, 1997).

RG Incorporating a Conditional Average

The basic idea of the conditional average is illustrated
in Figure 1. Essentially, from the complete turbulent
ensemble we select all those members whose u~ modes
are ‘close’ to those of a particular reference member
(those members whose low-k modes lie entirely within
the two dashed lines in Fig. 1). These members form
the so-called biased sub-ensemble. Whereas the or-
dinary ensemble average involves a summation over the
members of the entire ensemble, the conditional aver-
age is defined as a summation over only those members
of the biased sub-ensemble. In this way it is hoped that
the conditional average of the u~ modes will give our
reference field, whilst the conditional average of the u™
modes will approach the result we would obtain if using
an unconstrained ensemble.

Using such an conditional average, McComb and
Watt (1992b) eliminated a band of high-k modes to
obtain the result

(8 + w1 (k)K®) up = My u; uy_, 9)



where v1(k) = vo + dvo (k) and

1 . .
% ds] Qj ()

2T [ M, (k)Mo (k - 5) Do i)
vog? + volk — j|?

dwo(k) =

(10)

This band elimination was then extended to further
shells as an RG calculation. By assuming that the ef-
fective viscosity and its increment scale in the same
way (which is true at the fixed point) and that the
rate of energy transfer is renormalized, they obtained
both the factor k~%/% in the energy spectrum and a
prediction for the Kolmogorov constant of 1.60 & 0.01,
in good agreement with experiment, for the range of
bandwidths 0.25 < n < 0.45.

Recently we have applied a new approach to the prob-
lem, utilising the idea of a conditional average which
displays asymptotic freedom as we approach ko (Mc-
Comb & Johnston, 1999). This calculation removes
several criticisms applicable to the earlier theory, and
regains the same result for the viscosity increment, but
there still remain two uncontrolled approximations, the
validity of which are unknown. First, we have to ar-
bitrarily truncate the moment expansion at low order.
Second, on the physical basis that u~ modes evolve
slowly on timescales defined by the viscous timescale
(v04? 4 wolk — j|*)~!, we perform an integral using, as
an approximation, a Taylor series truncated at zeroth
order.

Along with other, more fundamental, questions re-
garding the applicability of RG, we have attempted to
test the validity of these assumptions using numerical
simulations. Some results from these studies are de-
tailed in the following sections.

Application of RG to Stirred Hydrodynamics

The approach we have taken is not the only way in
which RG may be applied to the NSE. An alternative
approach was taken by Forster, Nelson and Stephen
(1977), henceforth FNS, who considered the problem of
the long wavelength properties of stirred hydrodynam-
ics by restricting themselves to wavenumbers far below
the inertial range and considering stirring forces which
were multivariate normal. However the FNS approach
is not immune to the problem of the determinism of the
NSE, as was noted by Eyink (1994).

The technique of conditional averaging can be ap-
plied to answer this criticism. By defining at the level
of forcing the constraint on the members of the sub-
ensemble, we can find the necessary corrections to the
velocity field, and their resulting effect on the renor-
malization of the viscosity. Doing this, we recover the
results of FNS to second order in perturbation theory,
whilst providing a firmer basis for the averaging opera-
tion.

NUMERICALLY TESTING THE THEORY

Our numerical simulations fall into two broad cate-
gories, DNS and LES, all of which were performed on
a parallel machine, the Cray T3D, which has 512 pro-
cessors and 64Mb of memory per processor. The DNS

were performed at a resolution of 256° whilst the LES
used a resolution of 128°. As an example of the speed
of these calculations, the DNS required approximately
0.5 CPU-hours per time step.

Both types of simulation followed the same well es-
tablished method. For the DNS we follow the work
of Orszag (1969) in constructing our initial velocity
field, performing time integration using a second-order
Runge-Kutta method, and achieving partial dealiasing
by way of a random shifting method (see, for example,
Rogallo, 1981). The LES code is simply a modification
of that used in the DNS, the molecular viscosity being
replaced by a wavenumber dependent eddy viscosity.

Results From DNS

Investigations which used DNS to probe the ideas be-
hind the conditional average have been previously pre-
sented (McComb et al., 1997). Here a DNS with Taylor-
Reynolds number Ry = 190 was used to generate an
ensemble of 1D-realizations. These were then used to
study the statistical properties of both constrained and
unconstrained sub-ensembles, considering correlations
between realizations and the probability distribution
functions of velocity increments. Although these re-
sults were preliminary in nature, they offered crucial
support to the hypothesis that a conditional average
may be used to reduce the number of degrees of free-
dom. More recently, we have been looking at using the
results of DNS to probe particular assumptions made
within the RG theory, and have further considered the
applicability of the RG results by performing an LES
using the predicted eddy viscosity.

Validity of the Approximations Made

As previously mentioned, aside from the more fun-
damental questions regarding the applicability of RG,
we have also investigated the validity of the two un-
controlled approximations using the results from DNS.
Our studies regarding the validity of assuming that the
u~ modes evolve slowly when compared to the viscous
timescale are still at a very preliminary stage and so are
not reported here. However, our investigations regard-
ing the arbitrary truncation of the moment expansion
offer support to this aspect of the calculation.

The truncation may be justified via the introduction
of a local Reynolds number R(k:), based on a length
scale k;!, the moment expansion being re-expressed as
a power series in this parameter. The local Reynolds
number can be expressed in terms of the energy spec-

trum as
: 1/2
R(ky) = S <E(k1)> (11)

o 27l'k1

Hence, substituting the energy spectrum from a DNS
we can get an estimate of its magnitude for any choice
of cutoff k;. The results from such a substitution are
illustrated in Figure 2. As can be easily seen, this cal-
culation yields the result that R(k1) is less than unity
for any value of k; greater than 0.45kq, its value be-
ing approximately 0.1 as ki tends to kq. Given these
results, it would thus seem a reasonable approximation
to neglect higher order terms in the moment expansion.
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Figure 2: Prediction for the local Reynolds number R(k1)
as found using the average energy spectrum from a 256°
DNS with e = 0.149, vy = 107° and Ry = 190. The
inset illustrates the high wavenumber region of the graph.
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Figure 3: Time evolution of the integral length scale
Reynolds number Ry, ( ) and Taylor-Reynolds number
Ry (—---- ) obtained from a 128% LES with k. = 60, € =
0.274 and v = 2 x 107%.

Using RG to Provide a Model for LES

We have performed our LES at a resolution of 128°
with a maximum resolved wavenumber, k. = 60. We
chose an energy input rate of e, = 0.274 and a kine-
matic viscosity vo = 2 x 107*, giving a value for the
Kolmogorov dissipation wavenumber of kg ~ 430. From
Figure 3, we can see that once we reach a fully evolved
state we achieve a Taylor-Reynolds number of the order
of 400.

We begin with the results for energy and enstrophy
spectra, plotted in Figure 4. These results have been
time-averaged over the final five eddy-turnover times of
the simulation. It will be noticed that there is a turn-up
of the spectra at the high-k end, however inspections of
the single-time energy spectra show no evidence that
the energy in this region accumulates over time.

Figure 5 shows the development of the skewness in
our simulations. It can be seen that this varies between
—0.3 and —0.4 once the system is fully evolved. This is
smaller in magnitude than the value of approximately
—0.5 that we would expect to see from a DNS (see, for
instance, Wang et al., 1996) but, in an LES, one loses
the detail of the small scales, which give rise to a large
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energy and enstrophy spectra

Figure 4: Time-averaged energy (----- ) and enstrophy
(----- ) spectra obtained from a 128° LES with k. = 60,
e =0.274 and vy = 2 x 10™*. For comparison, the Kol-

mogorov energy ( ) and enstrophy ( ) are also
plotted.
0.8 : .
06t 1
& 04
|
02
o . . .
0 2 4 6 8 10

Figure 5: Time evolution of the skewness in a 128° LES
with ke = 60, € = 0.274 and 1o = 2 x 107*.

proportion of the skewness (Dubois et al., 1997).

For illustration, we have also plotted a graph show-
ing a measure of the isotropy in each wavenumber shell
(Curry et al., 1984), Figure 6, along with a graph show-
ing transport power and dissipation rate, Figure 7.
The latter is of interest because it is a criterion for the
existence of an inertial range that these should reach
the same value.

If we consider the results from lower resolution (32°)
simulations shown in Figures 8 and 9, we can also see
that the RG eddy viscosity gives results which com-
pare well with both those obtained using an alternative
model for the eddy viscosity, that obtained by Kraich-
nan (1976) using the direct interaction approximation,
and also those which we obtain from a DNS with the
same parameters.

For these low resolution simulations, we also have
available plots of the vorticity fields, Figures 10, 11 &
12. As can be seen here, there is little qualitative differ-
ence between the plots for any of the simulations, both
LES models giving results comparable to that which we
obtain by taking the results of a 256° DNS and trun-
cating to 32°, hence removing the small scales.
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Figure 6: A measure of the isotropy obtained from a
128° LES with k. = 60, e = 0.274 and 1o = 2 x 107%. A
value of close to unity indicates that the velocity field is
approximately isotropic at that point.
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Figure 7: Time evolution of the transport power 7
( ) and dissipation rate e (----- ) as obtained from
a 128° LES with k. = 60, e = 0.274 and 1o = 2 x 107*.

energy and enstrophy spectra

Figure 8: Time-averaged energy and enstrophy spectra
obtained from a 256 DNS (energy , enstrophy )
in comparison to a 32% LES using the RG eddy viscos-
ity (energy ----- , enstrophy ----- ) and a 32% LES using
Kraichnan's TFM eddy viscosity (energy ———, enstrophy
—=—=). All the simulations use the parameters ¢ = 0.149
and Vo = 10_3‘
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Figure 9: Time evolution of the Taylor-Reynolds number
obtained from a 256 DNS ( ), a 32 LES using the
RG eddy viscosity (----- ) and a 32° LES using Kraichnan's
TFM (——-). All the simulations use the parameters ¢ =
0.149 and 1o = 107°.

CONCLUSIONS

Although not fully conclusive, since a 256° DNS has
a very limited inertial range (see, for example, Yeung
and Zhou, 1997), our results offer support both to the
hypothesis of using a conditional average to eliminate
turbulent modes, and to our truncation of the moment
expansion. Further, an LES performed using the eddy-
viscosity from our RG calculation gives results in good
agreement with those obtained using alternative mod-
els, for instance Kraichnan’s TFM (1976), and also the
results of a DNS with the same parameters. The fact
that this is so gives further support to our analytic cal-
culations.

Our work is continuing in a similar direction as re-
gards using DNS to study the remaining uncontrolled
approximations arising in our analytic work. We intend
to extend the reported LES work to study further the
statistical properties of the resulting velocity field.

The main part of our work has concentrated on the
chaotic part of the subgrid stress, which can be aver-
aged out in terms of an effective viscosity, and which
controls the dissipation rate of the LES. We are also
now working on ways of handling the short-range (in
wavenumber) coherent part of the subgrid stress, which
is responsible for phase correlations between resolved
and subgrid scales. On the basis of the deterministic
connection involved here, we have experimented with
an operational procedure to modify the behaviour of
the resolved field in the neighbourhood of the cutoff
wavenumber and some interesting preliminary results
have been reported (Young & McComb, 1999).
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Figure 10: The vorticity field from a 32® LES using the
RG eddy viscosity with ¢ = 0.149 and vy = 10~%. The
plotted iso-surfaces are for a value of 55% of the maximum
vorticity.

Figure 11: The vorticity field from a 32° LES using
Kraichnan's TFM eddy viscosity with ¢ = 0.149 and
vo = 1072, The plotted iso-surfaces are for a value of
55% of the maximum vorticity.

Figure 12: The vorticity field from a truncated 256> DNS
with € = 0.149 and o = 1073, The plotted iso-surfaces
are for a value of 55% of the maximum vorticity.
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