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ABSTRACT

A quadratic low Reynolds turbulence closure ensur-
ing non-zero anisotropies on the wall is described.

The influence of anisotropy and of the length-scale
determining parameter is assessed by combination of
the nonlinear constitutive relation with both a k-e¢ and
a k-w based (SST) turbulence model.

The performance of these models is compared to a
classical linear low Reynolds k-e¢ model and a non-linear
high-Reynolds k-w model for two testcases: channel
flow and Backward facing step (BFS) flow.

INTRODUCTION

Most turbulence models used nowadays are based on
the Boussinesq hypothesis linking the stress and strain
tensors within a linear constitutive relation. Although
many popular turbulence models originate from this ap-
proach, it has the inherent weakness not to reproduce
the strong anisotropies, which significantly influence the
mean flow in e.g. curved channels, stagnating flows,....
For fully developed channel flow this approach even er-
roneously reduces to an isotropic model. To model
anisotropy, two approaches are possible: 1) the use of
Reynolds stress models (RSM), 2) the use of nonlinear
constitutive relations. The second method is appealing
as the computational cost remains low. On this basis,
Gatski and Speziale (1993) developed a high Reynolds
version of an anisotropic model. In this paper we propose
alow Reynolds anisotropic constitutive relation which al-
lows to model the anisotropy up to the wall. This new
model is compared with a classical linear model and the

nonlinear model of Gatski.

A second, but less known, weakness of presently used
turbulence models is the non-universal prediction of tur-
bulence time or length scales, especially in more complex
flows, e.g. separated flows. These scales appear in the
constitutive relation and have an important influence on
the prediction of both the turbulent normal and shear
stresses. The turbulent time or length scale can change
drastically in non-equilibrium flows, leading to incorrect
representations of the Reynolds-stresses, even when an
anisotropic constitutive relation is perfectly tuned. In
most turbulence models, the turbulence dissipation €
or the turbulence frequency w are used to define these
scales. In this paper, the developed nonlinear model
is combined with either a k-¢ turbulence model or the
SST model of Menter (1994), which is based on a k-w
model. The present nonlinear relation necessitates a low
Reynolds extension of the SST model.

PROPOSED TURBULENCE MODEL

A quadratic constitutive relation based on the ideas of
Speziale and Abid (1995) and Shih et al. (1993) is used.
A general and co-ordinate invariant relationship between
stresses, strains and vorticities, up to quadratic terms,
can be written as
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where S‘,-j and f),-j are the components of the non-
dimensional shear and rotation tensors:

5 _ 1 0ui  Ouj 2 1,0u; Ouj
S”_T§(6z‘j 8x,~)’ Q”—T

and where b;; are the components of the anisotropy ten-
sor, T is a turbulent time scale, and ¢y, ¢1,C2,c3 are
apparent viscosities.

First order term

Realizability, defined as the non-negativity of the
turbulent normal stresses, together with the Schwarz-
inequality between any fluctuations, is a physical and
mathematical principle that should be ensured by any
turbulence model. As the standard k-¢ model is not re-
alizable, the first objective is to introduce a realizable
first order model.

Consider as an example an accelerating flow where
S11 = —S22 > 0 and all other shear components are
zero. If only the first order term in equation (1) is used,
the normal stress u)u} can be written as
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For standard k-¢, with ¢, = 0.09, equation (2) pro-
duces a negative value when S11 > 3.7. Physically uju)
decreases when S71 increases. Using the dimensionless

shear S = \/ 2§ij§z’j, the realizability conditions are:
u’y uf =
;k1>0 for 0 < S < oo
uy Uy u'l_ui for S = oo
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These conditions can be satisfied by using

1
S 3
T AT 155 ®)

In order to determine the constant A, the value of S in
the equilibrium region of a channel flow is considered:
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S ~ 3.3. As the standard k-€ model has been tuned for
this flow, we choose A = 6 which reproduces ¢, = 0.09
for this region.

To extend the model for validity in the wall region,
low-Reynolds number modifications are necessary. In line
with the accompanying low-Reynolds turbulence model
of Yang and Shih (1993), the turbulent time scale is taken

as
k \/7

T=—44/—

€ €

Due to the replacement of ¢, = 0.09 by equation (3),
a new damping function is needed in order to adjust the
turbulent viscosity correctly near the wall. As in the
Yang-Shih model, Ry, = 4& was used as a wall dis-
tance parameter. The DNS-data of Kim et al. (1987)

urh/2 _ 395 were used to

for channel flow at Re, =
determine the damping function f,.

The shear components for channel flow are: S1;3 =
Sa2 = 0 and S12 = Sy = %uy. As a consequence,
in this flow, the quadratic terms do not influence u_'l-lg
and the normal stresses do not influence the turbulent
production. This allows the development of a first order
model without knowing the exact form of the quadratic
terms. The function f, was constructed by compar-
ing u—’l—uTz from the DNS-data with m = —2kcu§12
as predicted by the high Reynolds model: fy theor =

_aTar
2—:%? The following function was obtained:
m
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This function f, respects the theoretical limit to the wall:
ujul ~ J(y®) implies f, ~ V(y) because k ~ I(y?),
which is satisfied as Ry ~ U(y?).

Second order terms

One can easily verify that in a simple shear flow, the
quadratic terms only affect the normal stresses whereas
the first order term only influences the shear stresses.
As the present study intends to reproduce the near-wall
anisotropy, the modelling should focus on the second or-
der terms. The goal is to reproduce the asymptotic be-
haviour of the fluctuating component perpendicular to
the wall. As this component vanishes faster than the
others when approaching the wall, one can derive the
wall-value of bas: bao = %%’2 - % — —% when y — 0
as uhuh ~ 9(y*) and k ~ I(y?).

To ease the modelling, a regrouping of the quadratic
terms is done, such that bs3 is solely affected by one term.



In equation (1) the c3-term can be omitted as Mansour
et al. (1991) showed that there is no effect of pure rota-
tion on initially isotropic turbulence. The two remaining
quadratic terms are then regrouped into two terms T
and T3, which can be cast in a common form:
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where a; and ay are constants and c;, is an apparent
viscosity to be determined for both 77 and T;. For the
case of simple shear (only S12 = S21 = Q12 = —Q21 =
a # 0) such a term has the following contribution to the
normal anisotropies:

bll = c:‘[aléaz + 02(2(12)]
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For ;1 = 6 and as = 1, a first term T} is obtained
which only influences b11:
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For 1 = 6 and a3 = —1, a second term T} is obtained
which only influences bas:

L . 1. ~ =
5 =Cual  6(SikSkj — §5ij51k5kl)
— (Qur Sk — Sik ;)]

This formulation does not allow a sufficient wall-
anisotropy. If modelled using 7] and T3, the byy-
component is determined as bz = c;z(2a2 + 2a%) =
cha(4a?) = ¢jpul7?. When using 7 = k. this results
in a wall value b5, = 0. Even when using 7 = f + \/?

as a time-scale, the corresponding wall value \/g is too

small to provide b3, = —%, unless allowing a very large
c;z when S is small. This is in contrast with a homo-

geneous shear, where a small shear should imply a small
anisotropy.

In order to allow non-zero wall anisotropies without
the creation of unphysical behaviour, the second order
terms are modified into:
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where the superscript w means the value taken on the
wall. The other tensor products are obtained by replac-
ing Qk; by Skj and/or Six by Qik in eq. (5) and (6).
Just as in the previous formulation, the effect of these
terms is to redistribute the turbulent kinetic energy
among the normal Reynolds stresses m For simple
shear flow, T} determines by; and 7% determines bas.
The last terms in (5) and (6) are near-wall corrections.
To ensure by = —% on the wall in different flows, a
(constant) non-zero value of the T5 term is provided by
using the wall pattern of shear and rotation in eq. (6).
In order to determine the constant (B2 in the last
term of (6), DNS-data for channel flow were used. The
anisotropies for positions going from the equilibrium re-
gion up to the wall were plotted as a function of the

parameter S= 25@ ; in the same graph as some ex-
perimental and DNS-values for a few simple shear flows.
Using this graph, two restrictions led to the choice of the
constant Fa:

1. a one-one relation between anisotropies and .S should

exist in order to use S for the modelling

2. the anisotropies for simple shear flows should still be
properly predicted.

The present choice of the constant 32 = 14 satisfies these
conditions.

The near-wall corrections which are given by equation
(6) are not used in the term 77 which determines bq3,
as the physical wall-value of b1;, although being non-
zero, is not constant, and differs depending on the flow.
Therefore, instead of using a wall-pattern, in equation (5)
the wall-shear values are made dimensionless by using the
wall-value of the Kolmogorov time-scale.

The constant £; in /(i) was chosen so that for the chan-
nel flow S,':.?kj = S;:gkj, resultingin 5; = 13.76 when
using DNS-data. When using the numerically obtained
value of €, the constant should be set at 57 = 16.24.

In equation (5), the limiting of the wall-correction to
a value between —32 and 32 ensures the wall-value of 5

does not exceed the wall value of § , thus prohibiting too
small values of b1; (which would occur if S > 20).
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To obtain a realizable model, the quadratic terms
should vanish when shear and/or rotation go to infin-
ity. Again, the available DNS-data for channel flow were
used to find the unknown coefficients c,1 and c,2 using
curve fitting. An additional constraint for ¢, is the value
on the wall in order to obtain b9y = —%. As a result,
following coefficients were obtained:

cur = 1/maz(p(x1),5) , cu2 = 1/p(x2)

p(z1) = —4.679+ 2.349z; + 0.7054z3
~0.01768z3 + (—2.55E — 5
+9.6116E — Tz)e 05007
p(zs) =  3(—17.995+ 8.7904z, — 5.8264z3
+0.2419z3 — 3.4922F — 3z3)
1= 58 +Q), 22=55+Q)
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Summary of the derived nonlinear model

In summary, the developed constitutive relation is:
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Proposed models

The present nonlinear model is combined with two dif-
ferent turbulence models to evaluate the influence of both
anisotropy and time scale.

The NLYS model uses the nonlinear model along
with the transport equations of the k-¢ model taken ac-
cording to Yang and Shih (1993):

Dk _ 0 v, Ok
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where E is a low-Reynolds-term.

As in the standard k-€ model, in the Yang-Shih model,
or = 1., 0 = 1.3, cc1 = 1.44 and ¢c2 = 1.92, while
the low-Reynolds modifications are:

fi=1, fo=1-022CG oy, =c fukr,
wlu

k \/7 62ui az’u;
T=—4+4/-,
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B =555, Garas,
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For this model, when using the numerically obtained
value of €%, the constant 3; should be set at 3; = 16.24.

The model NLSSTL basically uses an SST frame-
work as suggested by Menter (1994), but extended for
low Reynolds effects (SSTL). As the k-w model has the
disadvantage of being quite dependent on the imposed
freestream values for w, and the k-¢ model does not have
this deficiency, Menter suggested using the k-w model
of Wilcox (1993a) in the near wall region and blend-
ing towards the standard k-¢ model in the outer part
of the boundary layer. In this paper the SST model is
extended for low-Reynolds effects (SSTL) by using the
low-Reynolds k-w model of Wilcox (1993) in the near
wall region.

The transport equations are then given by:

Dk _ —I—,alh " 8k
Dt _u"uj&cj k+ 3mm((y+okyt)0xm)
Do _ ygti 4. 0 Ow
Dt~ Uit Ox; ™+ 0z, (v +owre) 3xm)
1 0k Ow
+2(1 -—Fl)o'wz 816]5; (7)

In the SST model, the turbulent viscosity is given by

Vi = min oc"‘ﬁ'i
¢ w,QFz

where a; = 0.31 and 2 is the absolute value of the
vorticity and F; is given by: Fa = tanh(arg?), args =

vk _ . 5000
mam(2———0.09wy, S ).

The parameters in the model (a*, v, 0%, 04,8, %)
are interpolated between values in the original model,
commonly denoted here by ¢;, and parameters in the
transformed standard k-¢ model, commonly denoted here
by ¢2, using the function Fj:

¢=Fié1+ (1 - F1)¢2
where, as in Menter’s model, the function F} is given by:

Fy = tanh(argt)

VE  500v, 40,0k
0.09wy’ y2w ’’ CDguy?

1 0k dw 10_20)

CDy,, = maz (2%,2-
The parameters of set 1 (¢1: low-Reynolds k-w) are:
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5/18 + (Rer/Rg)*
, =3/40,
1+ (Rer/Rp)* Pr=3/
ok =05, owr = 0.5, with af = f1/3 ,
ao =1/10, Rs=8, R, =6, R, =27/10

Bt = 0.09

where Rer is the turbulence Reynolds number defined
by Rer = ;’5;

The parameters of set 2 (¢2: standard k-€) are: af =
1., o2 = 1.0, 0,2 = 0.856, B2 = 0.0828, 55 = 0.09,
k=041, v, = B2/P3 — 0u2K?/ /B3

In the NLSSTL model, the turbulent viscosity and
first order term in the constitutive relation are de-
termined by the SSTL formulation, but the proposed
quadratic terms have been added. The value of €, needed
in the constitutive relations, is determined as € = #*wk.
For this case, in eq. (5), the value 1 = 13.76 can be

maintained.

RESULTS

Figures 1 to 3 show results for a channel flow. The lin-
ear k-¢ model of Yang-Shih (1993) is denoted as LYS.
The nonlinear model of Gatski and Speziale (1993), com-
bined with the high Reynolds k-w model of Wilcox
(1993a) is denoted as KOGS. The velocity and shear
stress profiles are well reproduced by all models. Only
KOGS underpredicts the turbulent kinetic energy due
to the high Reynolds k-w version used. The difference
between the models is most obvious in the profiles of the
normal Reynolds-stresses. The present model agrees very
well with the DNS-data both when using the k-¢ and the
low-Reynolds SST formulation. Indirectly, this means
that the time scale is well defined by both turbulence
models for this flow configuration. As expected, the lin-
ear YS-model produces identical profiles for uu, vv and
ww corresponding to an unphysical isotropic turbulence.
The too low k-peak prediction in the KOGS model is
entirely due to the use of the high Reynolds k-w version.
The constitutive relation fails to reproduce the normal
stresses, especially near the wall. The vv and ww pro-
files have nearly identical evolutions with v ~ O(y) near
the wall instead of the correct v ~ O(yz). The present
model predicts this near-wall behaviour correctly.
To see the influence of the turbulence scale, the more
complex flow pattern of a Backward Facing Step (BFS)
is chosen. The considered BFS (Rep = 5100) was cal-
culated by Le and Moin (1992) using DNS. This flow is
already quite complex because of the occuring recircula-
tion region. In our calculations, the grid, extending from
3 stepheights before to 19 behind the step, had 185 x
129 nodes. Figure 4 shows results for the friction coeffi-
cient. With the linear Yang-Shih k-¢ model, the recircu-
lation length is seriously underpredicted. This is however

also the case for the nonlinear version of the Yang-Shih
model. Surprisingly, the better predicted Cs-evolutions
are not primarily related to the used anisotropy model,
but rather to the used turbulence model. The k-w based
models, i.e. KOGS and NLSSTL, predict the recir-
culation region much better than the k-¢ based models.
The used anisotropy model has only a secondary effect
when comparing KOGS and NLSSTL. This stresses
the importance of the turbulent time scale which is ap-
parently better represented with a k-w than with a k-¢
based turbulence model. In figure 5, the k-profile inside
the recirculation zone is best predicted with the present
anisotropy model together with the low Reynolds version
of the SST turbulence model.

CONCLUSIONS

The use of a nonlinear model which predicts anisotropy
up to the wall allows accurate anisotropy predictions, but
does not significantly improve flow predictions in sepa-
rated flows, when used with a k-¢ based model.

The use of a k-w based model like the SST model,
which has been adapted for low-Reynolds effects, signifi-
cantly improves BFS-predictions. This suggests the bet-
ter representation of the turbulent time and length scales
by such a model.

The combination of a low Reynolds modification of the
SST model with nonlinear constitutive relations provides
the best overall performance.
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Figure 2. Turbulent shear stress profile for channel flow,
Re, = 395.

Menter F.R. , ‘Two-Equation Eddy-Viscosity Tur-
bulence Models for Engineering Applications’. AIAA J.,
32(8):1598-1605, 1994.

Shih T. H., J. Zhu and J. L. Lumley. , ‘A Realizable
Reynolds Stress Algebraic Equation Model . Technical
Report TM 105993, NASA, 1993.

Speziale C.G. and Abid R. , ‘Near-Wall Integration
of Reynolds Stress Turbulence Closures with No Wall
Damping’. AIAA J., 33, 1995.

Yang Z. and Shih T.H. , ‘New Time Scale Based k—¢
Model for Near-Wall Turbulence’. AIAA J., 31(7), 1993.

Wilcox D.C. , ‘Turbulence Modeling for CFD’.
Griffin Printing, Glendale, California, 1993.

Wilcox D.C. , ‘Comparison of Two-Equation Tur-
bulence Models for Boundary Layers with Pressure Gra-
dient’. AIAA J., 31(8):1414-2031, 1993a.

352

y+

4
UU+,VV+,WW+

Figure 3. Normal Reynolds-stresses profile for channel flow,
Re, = 395.
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Figure 4. Step-wall skin friction coefficient for BFS, Repn =
5100.
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Figure 5. Turbulent kinetic energy profile for BFS, Ren =
5100, at streamwise location X/H=4.



