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ABSTRACT

Turbulent reacting flows with moderate or high Reynolds
(Re), Schmidt (Sc) and Damkoehler (Da) numbers can be
calculated only approximately. Lagrangian probability
density function (PDF) methods are especially attractive for
computing such flows, because approximations are restricted
to the simulation of mixing processes. For the calculation of
these processes, a new Lagrangian multi-scale scalar mixing
model is presented here. In contrast to previously applied
methods, this model describes for high-Sc flows mixing also
at the Kolmogorov- and Batchelor-scales. This is relevant,
because the characteristic scalar mixing time may be much
larger than for flows without extended Kolmogorov- and
Batchelor-scale. The significant effect of this delay of the
onset of chemical reactions is illustrated by means of the
simulation of mixing and parallel chemical reactions of
species in a turbulent pipe flow. It is shown, that the neglect
of such effects by conventional techniques results in errors
of about 50% for the case considered. This application
reveals the remarkable effects of Re and Da, which are
closely related to each other.

INTRODUCTION

Turbulent reacting flows may be distinguished by means
of their characteristic numbers, Re, Sc and Da: they
determine the competition between the most important
processes, mixing and reaction. In flows of industrial or
environmental relevance, Re, Sc and Da may vary over
orders of magnitudes. Hence, approximation methods are
needed for many flow calculations, because direct numerical

simulation (DNS) can only be applied to flows with small
Re, Sc and Da.

The approximated calculation of turbulent reacting flows
by Eulerian techniques as Reynolds-averaged Navier Stokes
(RANS) equations or large eddy simulation (LES) requires
closure models for the mean or filtered chemical conversion
rate, which have to reflect the influence of mixing on this
conversion rate. Usually applied closures are justified only
for very high or small Da. The attraction of Lagrangian PDF
methods, which calculate the joint PDF of velocity and
composition using particle methods, results from two facts:
First, in contrast to DNS, these methods can be applied to
flows with Re, Sc and Da that vary from very small to very
high values. Second, in contrast to conventional Eulerian
methods, PDF methods do not have the problem to close the
reaction rate, i.e., the competition between mixing and
reaction is simulated only as a consequence of the mixing
simulation (Pope, 1985, Fox, 1996).

To improve existing mixing models and to illustrate
simultaneously the relevance of considering Re-, Sc- and
Da-effects, we present a new Lagrangian multi-scale scalar
mixing model. In contrast to methods used previously (Fox,
1995, 1997), this model is shown to be applicable to high-Sc
flows (liquids). Due to the fact that the characteristic scalar
mixing time may be much larger, the mixing in these flows
differs remarkably from that in low-Sc flows (gases).

First, usual Lagrangian models for the velocity and mass
fractions of species are presented as a frame for the
following development. Then, the derivation of the new
mixing model and its application to mixing and reaction of
species in a turbulent pipe flow are described.
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LAGRANGIAN STOCHASTIC MODELS

By Lagrangian stochastic models, the turbulent flow can
be described according to a variety of turbulence models
(Pope, 1994a, Durbin and Speziale, 1994, Wouters et al.,
1996, Heinz, 1997). To keep the development of the
methodology as simple as possible, we describe the flow by
means of the simplified Langevin model (Pope, 1985). In
that way, the change in time t of positions x" = (x,", x,", X;")
and velocities U" = (U;", U,", U;") of a fluid particle
moving with the flow is given by (i=1, 2, 3)
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Here, p is the Reynolds-averaged pressure, p the averaged
fluid density, q* = <u;u;> twice the turbulent kinetic energy
(TKE) and T = ¢ / (2¢) the dissipation time scale of
turbulence, where € is the mean dissipation rate of TKE.
Eulerian velocity fluctuations are denoted by u; = U; — <U;>,
and summation is assumed for repeated subscripts. The
Reynolds-averaged Eulerian velocity <U> (x*, t) is written
without star in contrast to Lagrangian quantities. The last
term in (1b) describes the influence of random accelerations.
This term is characterized by the white noise dW, /dt, which
is a Gaussian process with vanishing mean values, <dW, /
dt> = 0, and with uncorrelated values at different times,
<dW, / dt) - dW;/ d’(t)> = Sij d(t — t’). The symbol 8ij is
the Kronecker delta and 8(t — t’) the delta function. For the
parameter C, we apply C, = 3.5 (Dreeben and Pope, 1997,
Heinz, 1998).

Analogously, scalar transport is modelled by means of the
often applied ‘interaction by exchange with the mean’ (IEM)
model (Pope, 1985). The mixing of the mass fraction ®_" of
a scalar o is described as

d * * -
Eq)u (t)=—G0L(<D(1 _<¢a>)+p lra’ (Ic)

where G, is assumed to be an unknown coefficient. The first
term on the right-hand side of (lc) models the scalar
micromixing in a formal correspondence to that of
momentum in (1b). <® > denotes the mean Eulerian mass
fraction of the o scalar. The reaction rate p~! r (®)
describes chemical transformations exactly.

Equations (la-c) determine the one-point joint velocity-
composition PDF, from which transport equations can be
derived for all their moments. These transport equations for
the mean velocities and mass fractions correspond to the
exact RANS equation for these quantities if the acceleration
due to gravity and molecular effects are neglected. The
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Figure 1. Idealized scalar energy spectrum in fully
developed homogeneous, isotropic turbulence. There exists
a large inertial convective subrange between the integral-
scale and the Kolmogorov-scale wavenumbers, k, and kg =
Re,*? k. Re, is the turbulent Reynolds number. For Schmidt
numbers Sc > 1, the scalar energy spectrum has additional
viscous convective (extending to the Batchelor-scale
wavenumber ky = Sc'? k;) and diffusive subranges. The
slopes — 5/ 3 and — 1 denote the scaling laws Eg(k) ~ k™3
and E4(k) ~ k7! in the corresponding subranges, where E is
the spectral scalar density functions.

transport equations for the variances of the velocity fields
correspond with Rotta’s (1951) turbulence model, if
Kolmogorov’s (1942) theory for the dissipation is adopted.
A corresponding comparison between the composition
covariance transport equation derived from (Ic) with
equations applied in the Eulerian framework is used in the
next section for the calculation of G

Provided G, boundary and initial conditions are given,
the equations (la-c) provide a complete description of the
turbulent flow and scalar mixing and reaction, because the
Eulerian mean velocities, compositions, the mean pressure
gradient and the TKE can be evaluated from particle
properties (Pope, 1994b).

COMPOSITION FREQUENCY MODEL

The coefficient G, in (1c) is often modelled by G, = C(p /
(27), i.e., it is considered as determined by the characteristic
turbulence frequency T~' of the inertial subrange. C‘p is a
constant with a standard value Cq> = 2.0. However, in
particular for high-Sc reacting flows, which are of special
interest for many applications in the chemical process
industry, the consideration of mixing processes at the



Kolmogorov- and Batchelor-scales may be very important,
see Figure 1. The Kolmogorov-scale wavenumber k. and the
Batchelor-scale wavenumber kj = Sc2 k; are well-separated
in that case, i.e., the characteristic transport time from k; to
ky is significantly larger than for small-Sc flows so that there
is a remarkable delay of the onset of chemical conversion
processes. In dependence on the reaction scheme, this fact
may lead to phenomena that cannot be predicted by simple
approximations.

By adopting guidance of an Eulerian multi-scale mixing
model, the consideration of multi-scale mixing in
Lagrangian simulations of the evolution of scalar fields
recently has been considered by Fox (1995, 1997). From a
methodological point of view, this approach represents a
substantial progress due to its systematic nature of
describing the transport of scalar energy as a cascade process
from large to small scales. This Lagrangian spectral
relaxation (LSR) model describes the multi-scale transport
of scalars in gases in a very good agreement with DNS data,
but there are some questions with reference to its direct
applicability to liquid-phase reacting flows. Presently,
comparisons of predictions of the LSR model with
experimental data are not available for flows with Sc > 1.

Therefore, we use another Eulerian multi-scale mixing
model (Baldyga, 1989) as a guideline to extend the
Lagrangian description of mixing processes at the
Kolmogorov- and Batchelor-scale to flows with Sc >> 1.
Baldyga’s model is applicable to the description of the
mixing of different scalars in inhomogeneous and
instationary flows, relatively simple and proved for a variety
of problems (Baldyga, 1994, Kruis and Falk, 1996, Baldyga
and Henczka, 1995, 1997). We apply this model by
constructing the composition frequency G, in (1c) so that
the composition covariance transport equations that follow
from (lc) are fully consistent with the corresponding
equations of Baldyga. The model derived in that way is
denoted below as our general model.

The G, obtained is given through a complicated system of
partial differential equations. For applications, an algebraic
expression for G, is of special interest in order to reduce the
computational effort. This approximation corresponds to the
consideration of the mixing frequency G, as a property of
the flow field, which is asymptotically little influenced by
details of scalar initial distributions or boundary conditions.
By neglecting gradient terms, one obtains an algebraic
equation of third-order in G,. Only one of these three
solution of the cubic equation will be realized, which reads

1 2 (p+27t) r
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Here, the abbreviations r, s and ¢ are given by by r = — (E +
G+C IT+27), s—EC /1:+(G+y)(E+C /T+7,)
and(p Arccos([EGCq)/’r 2r3/27+rs/3]/(2 [@%/3 -
s)3 / 271Y2)). The influence of Kolmogorov- and Batchelor-
scale mixing is reflected through the frequencies E = 0.058 /
T and G =(0.303 + 17050/ Sc) E. Here, T is the Kolmo-
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Figure 2. The composition mixing frequency G, according
to (2) in dependence on E, G and ,, where all quantities are
normalized to Ccp / t. G is related to E by G = (0.303 +
17050/ Sc) E, where Sc = 800.

gorov time scale that is related to the kinematic viscosity v
by, = (v/ €)', Additionally, v, =—2 <uc, >/c 2 9<C>
lax is introduced (<uc > is the turbulent scalar ﬂux) Wthh
represents the 1nﬂuence of scalar gradients on the
composition frequency. With reference to its IEM-structure,
the model (2) is denoted as algebraic multi-scale interaction
by exchange with the mean (AMSIEM) model.

Analysis of (2) reveals the relation G, < 0.5 Min (G, E, CqJ
/ 7). The equal sign applies to Y, = 0, i.e., in that case G, is
given by the minimum of the available frequencies G, E and
(C / 7). Hence, the consideration of E and G may lead to an
1ncrease of the characteristic mixing time G, due to the
consideration of scalar fluctuations beyond the inertial
convective subrange in the viscous convective and diffusive
subranges. For v, # 0, we find G, < 0.5 Min (G, E, C(p /1),
i.e., the appearance of scalar gradients always leads to a
reduction of the mixing frequency, which may be
remarkable. This is illustrated in Figure 2, where the
dependence of G, on C /7, E, G and vy, is illustrated. At y,
=0,2G,/ (C /1:) is equal toE/ (C / 1), provided that E /
, /1:)<1 ForE/(C /=1, weﬁnd2G /(CylD=1
For Y, # 0, the compos1t10n frequency decreases in both
cases: The appearance of scalar gradients y, leads to a
greater amount of organized motion, so that the amount of
unordered motion (the molecular diffusion represented by
G,) decreases.

The required calculation of Y, can be simplified by
relating <uc > algebraically to the scalar gradient according
to (la-c). Thls leads to v, = A T (¢ / 6,2) [9<C> / 9% ]2
where A =8 C,/ [3 C, +2) B C, +2+4G D). Th1s
expression for Y, is applied in the simulations presented
next.
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APPLICATION TO MIXING AND PARALLEL
CHEMICAL REACTIONS IN A PIPE

The general mixing model derived as described in the
previous section represents a Lagrangian stochastic model
that satisfies exactly Baldyga’s Eulerian composition
covariance transport equations, which are tested for different
flows. This fact provides evidence for its good performance.
We illustrate this performance in respect to the Baldyga’s
(1994) pipe flow experiments for two reasons: first, to
demonstrate the applicability of the algebraic version
AMSIEM of the general mixing model, and second, to show
the remarkable effect of the consideration of mixing
processes at the Kolmogorov- and Batchelor-scale.

Experimental investigations were carried out in a tubular
reactor with an inner diameter of D = 32 mm equipped with
a concentrically located tube with an inner diameter of 1.81
mm and an outer diameter of 2.52 mm, see Figure 3. The
mean pipe velocity <U,> varied from 0.469 m s~ to 2.19 m
s71, which corresponds to a change of the pipe Reynolds
number Re = <U;> D / v from 15000 to 70000, where the
kinematic viscosity v = 10~® m? s™1. The investigation of the
mixing and reaction of species were performed by
introducing a premixture of hydrochloric acid (B = HCI) and
ethyl chloroacetate (C = CH2CICOOC2HS) over the reactor
cross-sectional area. A solution of sodium hydroxide (A =
NaOH) was fed through the concentrically located injector.
These species react according to

K ka

A+B——R, A+C——>S, 3)

where k; — e, k, = 23 dm® / (mol s) at a temperature T =
293 K. R and S are the reaction products. This reaction
scheme represents the structure of many important chemical
process engineering or environmental applications. As
shown below, the efficiency of chemical conversions
according to (3) may depend very sensitively on mixing.
This efficiency can be evaluated through the final selectivity
X, of forming S, which is proportional to the decrease of the
C-concentration along the reactor

_ Cco—Cc,ou

Cao

X , (C)]

s

where EC(,, C,o and EC.out are the inlet concentrations of
C and A and the outlet concentration of C, respectively,
averaged over the reactor diameter. These quantities were
measured chromatographically.

To describe this pipe flow, the Lagrangian equation (1a-c)
were closed by 1= C, D (q*/ 2y and 1, =(C, D Y2 (q?/
2)73, where C, = 0.09. In that way, the ratio of these time
scales Re, = 7/ 7_1is found as a robust function of the TKE,
which is advantageous for these simulations. Boundary
conditions are provided according to the approach of
Dreeben and Pope (1997). The simulations were carried out
by means of the code PDF2DV (Pope, 1994b). The domain
is discretized into (radial) 18 and (streamwise axial) 75 cells.
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Figure 3. Illustration of the pipe flow geometry and feed
streams A, B and C.

A nonuniform grid spacing was applied in the streamwise
direction, so that the length of the first cell was five times
smaller than that of the last cell and approximately of the
same size as the radial cell length. In that grid, the radial
extent of the source corresponds to the radius of the first grid
cell. The extent of the computational domain was 10 D in
the streamwise direction. The mean particle streamwise
velocity at the inlet region was derived from the Reynolds
number by <U;> = Re v / D, and the radial mean particle
velocity was set to zero. For the turbulence intensity we
applied, independent of Re, 0.16 at the inlet region. The
influence of variations of this value on the results is lower
than 0.2%. The initial values for T and T, were determined
according to the parametrizations given above. It was proved
that the flow field quantities were obtained in accord with
the features found in measurements and DNS (Eggels, 1994,
Eggels et al.,, 1994, Toonder and Nieuwstadt, 1997). A
detailed description of the performance of the same code for
similar conditions can be found elsewhere (Dreeben and
Pope, 1997).

Calculations of X, according to (4) were performed for
Re-variations between 15000 and 70000 and various initial
concentrations for A, B and C. The mixing was calculated by
the AMSIEM (2). The results of these simulations are
presented in Figure 4. The fact that in this experiment the
selectivity X depends on the Reynolds number Re can be
explained as follows. Close to the injector, there is a lot of A
compared to B + C. After consumption of part of A by the
reaction with B there remains A to participate in the second
reaction. The higher Re = <U;> D / v (or the inlet flow
velocity, respectively), the smaller is the selectivity X_ due to
the slower chemistry between A and C. This dependence of
the chemistry on the Reynolds number can be made explicit
by means of the Damkoehler number Da. =k, C, 1=¢
k, EA D2/ (Re V) for the reaction between A and C, where
§=C, (¢ /2 <U>)" is introduced. This quantity is
proportional to the inverse turbulence intensity. At the
centreline, we find by means of (la-b) in an algebraic
approximation § = x, / (2D) + & The value of § at the
streamwise position x; = 0 is denoted by &, which is
independent of Re. Hence, we find that Da. is inversely



proportional to Re,

k,C.D?[ x
Da.=—228—" | 2L ¢ | 5
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The effect of Da, can also be observed by comparing Figure
4a and 4b. Due to the chosen initial concentration of A, Da,
related to Figure 4b is twice of the value of Da. related to
Figure 4a. At Re = 15000, the inlet values of these
Damkoehler numbers are Da, = 0.1 and Da, = 0.05,
respectively.

The comparison with the measurements reveals the good
performance of the AMSIEM model. The calculation of the
mixing with the usually applied mixing rate C, / T instead of
G, leads to a remarkable underestimate of the selectivity X,
which amounts to approximately 50% for Re = 15000. The
reason for this difference is given by the fact that C, /7
provides a too strong mixing between A and B + C. In that
case, X, decreases due to the infinitely fast destruction of A
through reaction with B. The overprediction of mixing
through C_/ 7 is illustrated in Figure 5, where the ratios E /
(Cw /1) =0.029 Re, and G / (Cq> / 1) are shown along the
centreline for Re = 15000 and Re = 70000. The normalized
composition frequency of the model that applies C<p /T as
mixing rate is given by 1. The values of E / (C o / t) smaller
than 1 indicate for the different Reynolds numbers the
relevance of Re-effects. For y, = 0, the calculated mixing
frequency 2 G, would be equal to E, but the appearance of a
streamwise scalar gradient in conjunction with small values
for the scalar variance results in values of v, / (C(p / 1) near
0.5 in the reaction zone, which leads to a smaller mixing
frequency G, see Figure 2.

SUMMARY

In contrast to previously applied Lagrangian PDF
methods, the mixing model presented here is shown to be
applicable to the calculation of the multi-scale turbulent
mixing in inhomogeneous liquid-phase reacting flows. This
is of relevance for both chemical engineering applications
and the further development of models that describe multi-
scale mixing in multi-phase flows. The methodology used
here to construct the mixing model can be applied in
consistency with other Eulerian variance transport equations
and Lagrangian (frame) models than the simple models used
here to illustrate the approach. Additionally, the presented
description of micromixing can be adopted in
computationally less-demanding PDF methods (Fox, 1998).

The mixing model in its general formulation can be seen
as proved for different flows through its full consistency
with the well-tested equations of Baldyga. The good
performance of its algebraic version, i.e., the AMSIEM
model, was illustrated. An interesting result from a
theoretical point of view is the fact that scalar gradients may
lead to a drastic reduction of the composition frequency.
Figure 4 in conjunction with relation (5) reveals, first, the
relevance of considering Re- and Da-effects, and, second,
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Figure 4. Product distribution X vs. Re. The initial feed
concentrations of A, B and C are: (a) C,, = 0.45 mol / dm3,
Cyp = Cgp = 0.009 mol / dm?, (b) C,,=0.9 mol / dm?, Gy =
Cp = 0.018 mol / dm?, (¢) C,, = 0.45 mol / dm?, Cy, = C,
= 0.014 mol / dm®. The dashed line gives the result of the
model that applies C (p/ 7T as mixing rate.
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that the difference to methods that neglect such effects may
be larger for flows with lower Reynolds numbers than
considered here.
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