STATISTICAL MODEL FOR THE CONDITIONAL
DISSIPATION RATE AND SURFACE DENSITY
FUNCTION OF SCALAR TURBULENT FLUCTUATION
INTENSITY

Valery A. Sosinovich, Valery A. Babenko, Julia V. Zhukova
Luikov Heat & Mass Transfer Institute
National Academy of Sciences of Belarus
15 P. Brovka Str., Minsk, Belarus

ABSTRACT
A closed system of the equations for one-point probability

density function (PDF) f,(I'), surface density function
(SDF) Z,(I'), and a conditional scalar dissipation rate

(CSDR) %, (I") have been derived and solved numerically.

These equations were derived through the closed equation
for the joint probability density function (JPDF) of a scalar

and the value of its gradient, P,(W.T) .

CLOSED EQUATION FOR THE JPDF
Modern approaches to turbulent combustion are related
with studying the flames being far from chemical
equilibium. The development of theoretical turbulent
combustion models demands a deep knowledge of statistical
- characteristics of the turbulent scalar field gradient.
Specifically, it tums out that for turbulent combustion flows
with non-premixed reactants to be described with regards to
states close to extinction, one must know the probability
density distribution for dissipation rate of mixture fraction
fluctuations on the stoichiometric surface (Peters, 1983). To
calculate such a function it is necessary to develop and solve
the equation for the joint probability distribution function
(JPDF) of a mixture fraction and its gradient P, (W, F) .Up
to date such a task was not done in the extent sufficient to
practical application, though some attempts had been
undertaken, (Meyers, O’Brien, 1981), (Gao, O’Brien, 1991).
In work Sosinovich et al. (1998) the closed equation for
the JPDF was deduced, which is of the following form
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The first term in the r.h.s. of (1) describes the diffusion
influence in a scalar space (this term may be rather called
anti-diffusion, because of its sign), the second one describes
the influence of turbulent velocity and scalar fields structure
on the JPDF. Here, S, (f) stands for asymmetry of the
joint probability distribution of velocity and scalar fields,
€(f) is the mean dissipation rate of turbulence kinetic

energy, X(f) is the mean dissipation rate of scalar

fluctuation intensity.

The third term in the r.h.s. of (1) presents an influence of
dissipation in scalar gradient space on the joint statistics of
reacting scalar field and the value of scalar gradient. The

function N, (") takes the form
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Here c¢*(¢) is the squared scalar fluctuation intensity,

D (0,1) is the forth derivative of the two-point structural
function of scalar turbulent field over distance » at zero r.
The forth term in the rh.s of the equation for the JPDF
describes an influence of mixed cross diffusion in space of a
scalar and scalar gradient on the joint statistics of reacting
scalar and its gradient. The function X ,(I") is presented by

the expression
X,@0) =K, expf a)i* | 5)

In (5) the following designations are used:
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F(x) is gamma-function and parameter n>0 is of the

order of unity.

The fifth term in (1) explains action of chemical reaction
rate on the JPDF. One can make an effort to solve equation
(1) numerically if calculating evolution of the functions

S, DZ(0,1), &), x(t), and c*(t) from any
auxiliary system. At the moment, this problem has not been
solved because of difficulties related to multi-dimensionality
of this function.

There are two closely related with the JPDF but more
simple statistical functions applicable to wide class of
turbulent combustion problems. The first one is the
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conditional scalar dissipation rate (CSDR), which means the
scalar fluctuation intensity dissipation rate averaged under

the definite value of the scalar field C(x,)=T" in the same

point. The second one is the surface density function (SDF),
which represents the specific area of isoscalar surface
C (x, t) =T per unit of volume.

The CSDR and SDF functions are of wide use in
intensively developed over the last years flamelet approach
to turbulent reacting flows, (Peters, 1986), which allows to
separate effectively the complexities of chemical reactions
from the problem of turbulent mixing modeling. Information
on the CSDR and SDF functions is critically important for
the success of different flamelet models of turbulent reacting
flows. The equations of flamelet models for the average
species. mass fraction and temperature, those bearing the
responsibility for turbulence information, involve the
conditional scalar dissipation rate of a passive scalar
(mixture fraction), calculated on the stoichiometric surface,
% (F) . On the other hand, a number of flamelet models is

connected with the balance equation for the SDF function,
Z, (F) , in a flame (see, for instance, (Vervich et al., 1995),

(Candel, Poinsot, 1990)).

An analytical expression for the CSDR has been derived in
O’Brien, Jiang (1991), Girimaji (1992) by mapping closure
approach. According to this approach the form of the CSDR
turns out to be time-independent. Meanwhile, the results of
computation of the CSDR based on DNS show the form of
this function to undergo essential changes during turbulent
mixing (Eswaran, Pope, 1988). This fact was confirmed by
studying this function experimentally in various turbulent
flows (Kailasnath et al., 1993). In Sosinovich et al. (1995),
the complex transformation of the CSDR was explained by
changing characteristic modes of the turbulent scalar field
during evolution. The equation for the SDF was derived in
Vervich et al. (1995) through the JPDF of a scalar and its
gradient. In this balance equation the various terms and
mechanisms were considered using the results of DNS from
Trouve, Poinsot (1994).

Up to now the most achievements in studying the CSDR
and SDF were obtained by DNS or experimentally.
Traditional statistical approaches for these functions have
not been developed. It complicates the application of new
flamelet models and their further development. So, the main
purpose of this work is to derive closed equations for the
CSDR and SDF on statistical ground.

CLOSED EQUATIONS FOR THE SDF AND PDF
Note, that the SDF and CSDR functions represent the first

and second order moments of the function P,(W.I),

correspondingly. In isotropic case the relation for X, (I')

can be presented through the JPDF of scalar and the value of
scalar gradient with the formula

£,(0) = [ WP.0v.Yaw ©)



Using this definition and equation for the JPDF, we can
obtain the equation for %, (I')

or (10)

where
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These equations contain the time-dependent coefficients
(dispersion, dissipation rate, asymmetry of velocity and
scalar field) which are found using the distributions of
turbulence energy and intensity of the scalar fluctuation field
in different length scales. For these functions the closed
system has been written in Sosinovich et al. (1987).

As follows from (10), the equation for £,(I") contains the
one-point PDF £, (') . So, it is necessary to write separate
equation for the latter function. This one can be deduced
from equation (1) using the definition of f, (I')

£, =[P.07.Dydw (13)

As can be seen from (13), the one-point PDF is the zero
order moment of the JPDF P, (W,I") . Integrating equation

(1) results in the known equation for f,(I'), (O’Brien, 1980).

2 pm=-2 2 @A@]-Da oA 14

or?

As indicated by (14), the function CSDR appears in the
expression for the one-point PDF. For this function one have
to derive separate equation.

CLOSED EQUATION FOR y, ()
The CSDR is related to the JPDF P, (W,T") by formula

1) = D[ W*Bew . D)aw 1 fT) (15)

As follows from this definition, the function %, (I') is
actually the second order moment of the function P(W,T).

Multiplying equation (1) by DWW * and integrating over
from 0 to oo, and using the equation for the function
£, ('), we obtain the following equation for ¥, (')
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The coefficients k, and k, were used for adjusting.

The following hypothesis was used when deriving
equation (16)

% (@) =%, Dy, (D) an

It means insignificant influence of CSDR fluctuation on this
function evolution.

THE NUMERICAL SOLUTION OF EQUATIONS FOR
Z,@, %, @) AND f,(I)

The system being solved consists of non-dimensional
equations (10) for the SDF, (14) the for one-point PDF, and
(16) for the CSDR. To certain terms with chemical reaction
rate in (10), (14), (16), it was necessary to determine the
function & (I') and Damkohler number Da . For simplicity
reason we assumed that expression for ® (I") was specified
by the first order reaction rate
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This formula refers to binary chemical reaction, when one
of the reactants is of great demand (Trouve, Poinsot, 1994).

The presence of "anti-diffusion" terms makes problem
(10), (14), (16) similar to classic ill-posed inverse problems.
Trying to integrate this system in normal time direction we
faced with a strong numerical instability. So, the problem
was solved in backward time direction, e.a. from some
"start" time moment f =¢ to £ =0.

When integrating system (10), (14), (16) in backward time
direction, some numerical problems were also presented,
especially in the regions where solution looked like a
combination of & -functions.

Solution of ill-posed problems in backward time direction
is accessible in case of a) distributions of desired function
are approximately known at f=7f, b) no definite
distributions at initial time #=0 are specified, c) the
solution itself is to some extent independent to small
variation of "start" distributions.

Fortunately, in our case there are enough reasons to build
"start" distributions at the end of mixing process, e.a. at a
moment ¢ =#_>>1. The choice of model analytical form of

"start" profiles for the one-point distribution functions
% (ts, ) and £, I‘) was based on the fact that at the end
of mixing the one-point distribution function j:(ts,I“) is
Gaussian. As known, tending the one-point JPDF to
Gaussian form is related to statistical independence of the
CSDR function on a scalar value at this stage of mixing.
Taking this fact into consideration, one can specify the
"start" profile for the one-point PDF as being of Gaussian
form and the CSDR function as independent on scalar field.

At this stage the "start" distributions of the function f;(I')
was specified according to model analytical expression:

P (19)

o’ +I?
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where parameters o and (@) control the sharpness of the

distribution. The parameter [3 was chosen to satisfy
boundary condition, which causes the value of o to be
found from the transcendental equation:

arctg(l/c) —/(2B)=0. The parameter 3 was found by
the known value of scalar dispersion ;? at the "start"
moment, B = \c? +0L2)/2 .

Start distribution for conditional dissipation rate at f =1,

models IT -like distribution of this value at the final stage of
mixing:
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where ¥ is a small parameter, controlling the sharpness of
graduated distribution (20). The value of ) was varied in
the range ¥ ~ 0.01-0.003 during computation.

Start profile for the function X,(I") is prescribed by the
formula Z, (I)=f, )y, (I'), expressing statistical

independence of a scalar and scalar gradient at a final stage
of mixing (Dopazo, 1994):

£, @)= 2‘{C)Zarctg((%F )v) @1)
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Integration of equations in backward direction was
routinely begun at the moment f, =25+30. It relates to
nearly complete mixing state. This corresponds to sharp
maximum of the function f; (F) at I' =0 and nearly zero

fi0)atTr>o0.

In test numerical runs the sensibility of solution to
specified start conditions was checked. In particular, the
same conditions (19) - (21) were assigned at different time

moments £ selected from the range ¢, € (15+30) .

RESULTS
As it is seen from fig. 1, the initial form of the one-
point PDF £, (T') (curve 1) looks as a sum of two

delta-functions, reflecting a nearly non-premixed state
of scalar field at the beginning of mixing process. The
content of mixed fluid is further increased (curve 2),
but, the form of the one-point PDF at this initial stage
remains principally the same, characteristic for sine
wave realization of a scalar field. This form of PDF is
connected (Eswaran, Pope, 1988) with the presence of
diffusion layers in turbulent flow. Curves 3 - 6
demonstrates growing maximum at I' =0, thus
showing two-mode form of the PDF and reflecting the
presence in a flow of non-mixed and mixed up to a
molecular level fragments of fluid. Such behavior of
the PDF is not reproduced by known DNS results,
possibly because of too small Reynolds and Peclet
numbers used.
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Fig. 1. The evolution of the PDF form: 1-¢ =0, 2-¢ =0.2,
3-t=1.,4-t =25, 5-1 =5, 6-1 =15, 7-1 =25.

This feature does not also present in the majority of models
based on mean turbulence characteristics. On the other hand,
two-mode character of the PDF was marked in experimental
work Kennedy, Kent (1979) and some theoretical papers
Cremer et al. (1994) and Sosinovich et al. (1995). Figures 2
and 3 exhibit the CSDR function at various stages of
turbulent mixing. A parabolic initial form of the CSDR
corresponds to

16
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Fig. 2. The evolution of conditional dissipation rate
% @)/ %): 1-t =0,2-£=0.5,3-t =1, 4-£ =2.5

sine wave realizations of turbulent scalar field. At
subsequent stages of mixing, when 5 < ¢ <15, (curves 3, 4)

the profile of the CSDR function in the middle part becomes
nearly flat. It’s probably caused by the typical realizations of
scalar turbulent field becoming saw-tooth, so scalar and its
gradient are in a weak correlation. Later on, when f > 15
(fig. 3), the CSDR profile repeatedly takes a parabolic form.
It is possible to assume, that such a form of the CSDR is
connected to an aggravation of typical realizations of scalar
field in such a manner that the maximum gradient is
observed at large values of scalar, that results in strong
correlation of a scalar and its gradient. The further evolution
of the CSDR (#>25) results in nearly flat distribution
again. At this final stage of evolution the form of PDF is like
Gaussian curve.
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Fig. 3. The evolution of conditional dissipation rate
% (C)/%(t): 5-1 =5, 6-1 =10, 7-1 =15, 8-1 =20, 9-1 >25
(asymptotic state).

The form of calculated surface density function divided at
integral surface area

Ez = .[ E,dl" (22)

is shown at fig 4. As this figure shows, evolution of the SDF
is in sharpening of its form. Initially, it has a parabolic form,
but after # >0 the SDF looks like a & -function, which
becomes more and more narrow.

This kind of evolution at large ¢ is probably related to the
loss of statistical correlation between fluctuation of scalar
field and its gradient.
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Fig. 4. Form evolution of the conditional surface
density function at Da=0.25: 1-¢ =0, 2-£=0.5, 3 - ¢ =1,
4-t=25,6-1t=56-1t=157- t =20.

CONCLUSION
The developed in the given work closed model for

evaluation of the functions y,(T'), £,(T), and Z,(T) can

be used at modeling the chemical reactions in turbulent
streams within frameworks of flamelet approach. The

calculated evolution of the one-point PDF f,(F)

demonstrates two-mode form at intermediate stages of
turbulent mixing. This outcome is in the qualitative
correspondence with experiment, but theoretically it was
obtained for the first time. The sequence of the CSDR forms
agrees well with the DNS results, (Eswaran, Pope, 1988),
and experiment (Kailasnath et al., 1993). The evolution of

desired functions x,(F) and X, (F) was tabulated. It
enables to use them in other researches.
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