NUMERICAL SIMULATION OF THE INTERACTIONS OF HIGHLY ENTANGLED
POLYMERS WITH COHERENT STRUCTURE IN A TURBULENT CHANNEL FLOW

Yoshimichi Hagiwara, Hidetoshi Hana, Mitsuru Tanaka and Susumu Murai
Dept. of Mechanical and System Engineering
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

ABSTRACT

Direct numerical simulations have been conducted with
many cluster models of beads and connecting springs in the
buffer region of a turbulent channel flow in order to investigate
how the low-speed streaks, the high-speed streaks and the flow
related to the streaks are affected by the cluster models. The
cluster model represents highly entangled polymers. The
computational results show that the minor streaks and the
small-scale eruptive flows associated with the low-speed
streaks, whose length scale and time scale are comparable to
those of the cluster model, are attenuated preferentially by the
clusters.

INTRODUCTION

Near-wall coherent structures in turbulent channel flows of
dilute polymer solutions have been focused on in order to
understand the mechanism of drag reduction by polymers.
Oldaker and Tiederman (1977) measured an increase in the
spacing of low-speed streaks caused by Polyethylene Oxide
(PEO) or Polyacrylamide (PAM). Tiederman et al. (1985)
reported a decrease in the bursting rate and an increase in the
streak spacing for a water channel flow with an injection of
dilute PAM solutions from a slot into a buffer region.

The effect of the polymers on the coherent structure has been
examined numerically recently in more detail. Direct
numerical simulation (DNS) was used for the solvent flow, and
the finitely-extendable-nonlinear-elastic (FENE) models were
adopted as representative of polymer chains. This model
consists of two spherical beads and a connecting spring with a
nonlinear spring constant. Massah and Hanratty (1997)
predicted an additional dissipation of energy by use of several
FENE models in their DNS. Kajishima and Miyake (1998)
reproduced the reduction of Reynolds shear stress and an
increase in streak spacing using many beads-spring-dashpot
models in their DNS.

We developed a cluster model of beads and springs as
representative of highly entangled polymers because it seemed
unlikely that it was possible that the entangled polymers were
simulated with the FENE model ( Hagiwara et al. 1997 ). Our
model was based on irregular network structures in bundles of
polymers, which were observed in the freeze-dried samples
from the flows of dilute PEO solutions by James and Saringer
(1980) and Miyamoto (1994). We carried out DNS on
turbulent channel flow with the cluster models in the buffer
region and showed the quasi-streamwise vortices were
influenced by the models (Hagiwara et al. 1998). However,
interactions between the streaks and the clusters have not yet
been examined in detail.

In the present study, the effects of the cluster models in the
buffer region on the Reynolds shear stress product are
examined. Also, the length and time scales of the cluster and
the streaks are investigated.

CLUSTER MODEL OF BEADS AND SPRINGS

Assumptions
Figure 1(a) shows the sketch from a photograph in

Miyamoto’s work. Strands which consist of a bundle of
polymer chains and nodes where the strands are entangled are
recognised in the irregular network structure in the photograph.
We assumed that the nodes were replaced by spherical beads
whose density is the same as that of the solvent flow. This is
reasonable because the nodes take a long time for their
dissolution and the nodes can be considered to be impermeable
for a certain period of the dissolution. It was also assumed that
the beads are of identical size, for simplicity.

Next, we assumed that the strands were replaced by
nonlinear springs with no volume. The restitution force of
springs was similar to that of an FENE model, and the spring
constant was identical. If the distance between any two beads
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Figure 1. Observed polymers and cluster model

was longer than a certain length, [, these beads were assumed
not to be connected directly by a spring. New entanglement of
polymers or the formation of the network structure can be
achieved by adding springs between the beads, while the
breakup of the structure can be achieved by subtracting the
springs. Figure 1(b) illustrates part of the cluster.

Finally, the connection between any two beads of two
different cluster models was not considered for simplicity.
This is reasonable when the polymer concentration is low and
not completely uniform.

Motion of Beads

The drag force, F,, calculated by the Stokes law of
resistance and the restitution force of the spring, F,, were
considered to act on the beads. The equation of motion for the
m-th bead is as follows:
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where p is the bead density, r is the bead radius, U™ and U are
the velocities of the bead and the solvent flow at the bead's
location respectively, u is the solvent viscosity, N is the total
number of springs connected to the m-th bead, [, and [, are
the distance between the bead and the n-th bead and its
unloaded value respectively, X™ and X" are the positions of the
m-th and n-th beads respectively, and k is the spring
constant.

U™ was evaluated by the time integration of a discrete form
of Eq. (1). The second-order Adams-Moulton method was
used for the time integration. Note that the Reynolds number
based on the bead diameter and the velocity difference between
the bead and the ambient fluid was lower than 1.5, and hence
the Stokes law was satisfied. The location of the bead was
calculated by the second-order Adams-Moulton method (Pan
and Banerjee, 1996).

Length Scales and Spring Constant
Table 1 compares the dimensions for the highly entangled

polymers estimated from the results by Miyamato and the
present authors (See Appendix B) with those for the cluster
model in the present study. These values are in the
nondimensional forms by using the friction velocity, u*, of the

314

TABLE 1. PARAMETERS OF THE CLUSTER MODEL

Miyamoto cluster model
shear rate 0.28 0.2~1.0(buffer region)
concentration [ppm] 500 600(buffer region)

node (bead) diameter 0.24~0.56 1.0

strand thickness 0.075~0.15 0

strand length 1.05~3.0 [3.6]
critical length - 4.6

cluster volume 1.5~12x10° [32x107)
node number density 0.032 [0.020]
spring constant 0.27 0.2

present DNS, the kinematic viscosity, v, and the channel height
in our experiment. The values with brackets in the table
indicate the initial values. The underlined value in the table
denotes the experimental result by the present authors. The
cluster volume in the table is calculated from the initial region
of either 29.4 viu* x 7.4 v/u* x 14.7v/u* (rectangular prisms)
or 14.7vlu* x 14.7v/lu* x 14.7v/u* (cube) for each cluster. We
estimated the apparent spring constant from Miyamoto’s
discussion in which he calculated the stress, and the ratio of
the length in the shear direction for a mesh in the network
structure and that perpendicular to the direction. It is found
from this table that all the values for the cluster model are
realistic and reasonable.

The unloaded spring length, /., , was assumed to be equal
to the spring length at the initial state.

Relaxation Time

We examined the relaxation time for the FENE model
(Massah et al. 1993), A, and that for one cluster, t. These
relaxation times are defined by the following equation.
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where D is the equivalent diameter of the cluster. A can be
considered as the relaxation time for a pair of beads connecting
by a spring in the cluster. T can be regarded as the relaxation
time for the cluster behaving as a solid body due to the tight
connection of the beads. A was equal to 0.31v/u*?, and T was
1.3vu*®. The actual characteristic time for the cluster is
expected to be in between these relaxation times for two
extreme cases. :

DNS FOR SOLVENT FLOW

Momentum Equation
The interaction between the bead of the cluster models and

the flow was dealt with as a two-way coupling. The reaction
force to the drag force in Eq.(1) was considered to act on the
solvent flow as an external point force. The momentum
equation of the flow is given as follows:
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where P is the pressure and V'is a cell volume for the reaction
force. All the fluid properties were assumed to be equal to that
of a Newtonian fluid and constant.

Computational Domain
The computational domain was assumed to be a box of 21th

x 2h x Th for a flow between two walls at the distance of 2h.
The origin of the coordinates was at the corner of the lower
wall. The X,, X, and X, axes were positioned in the
streamwise, wall-normal and spanwise directions, respectively.
The domain was divided into a total of 64 x 96 x 64 cells. The
cell dimension is identical either in the X, or the X; direction.
It increases from the walls to the axis based on a hyperbolic
tangent. The velocity components were assigned at the centre
of the cell surfaces ( grid points for velocities ), and the
pressure and the external force were assigned at the centre of
the cell ( grid points for forces ). The Reynolds number based
on h and u* was 150. The Reynolds number defined by the
mean centerline velocity and the wall distance was 5306. In
Table 2, the domain size, the number of grid points, the grid
spacing, and the Reynolds number are compared with; those
adopted in DNSs for channel flows with the polymer models
(Massah and Hanratty; Kajishima and Miyake) and those
without the models (Kawamura, 1995; Kuroda et al., 1995).

Computational Schemes

The second-order central difference scheme based on the
interpolation method (Kawamura, 1995; Kajishima, 1994; See
Appendix A) and that without the method were applied to the
finite differencing of the convection terms and the viscous
terms of the momentum equations, respectively. The second-
order Adams-Bashforth method was used for the explicit time
integration of the convection terms, the viscous terms and the
external-force terms. The fractional-step method was adopted
for the implicit time integration of the pressure terms. These
schemes were validated by comparing the turbulence quantities
with those calculated by other DNS'’s by one of the present
authors (Hana, 1999).

In the discretised form of Eq. (3), the reaction force to F, for
each bead was distributed to eight neighbouring grid points for
forces by a spatial interpolation method. Similarly, the fluid
velocity near a bead in the right-hand side of Eq. (1) was
calculated from the values at eight neighbouring grid points for
velocities by the spatial interpolation method.

Initial and Boundary Conditions

The result of a preliminary computation without the cluster
models was adopted as the initial velocity field of the main
computation after a statistically developed state was confirmed.
The universal velocity distribution superimposed on sinusoidal
velocity fluctuation in the three directions was taken as the
initial velocity field for the preliminary computation. This
velocity field satisfied the local and overall mass
conservation.

200 cluster models were distributed nearly uniformly in the
buffer region (10 < X," < 25) of the database at the initial state.
This distribution is based on the experiments carried out by
Tiederman et al. and the present authors shown in Appendix B.
The initial location of the beads was nearly uniform in the
initial cluster region mentioned above.

TABLE 2. DOMAIN SIZE AND GRID RESOLUTION

case L/hLJh N, N, N; AX;" AX," AX,"Re*
Present 27 m 64 97 64 14.7 0.85~5.4 7.36 150
Kajishima 7.7 3.8 64 64 64 18 0.93~9.0 9.0 150
Massah 13 6.3 128 65128148 NA  7.42 150
(without polymer model)

Kawamura 6.4 3.2 128 66 128 9.0 0.8~11.8 4.5 180
Kuroda 5m 2m 128 96 128 18.4 0.08~4.9 7.4 150

The nonslip boundary condition was imposed for the walls.
The periodical boundary condition was applied for velocity
components and pressure in the X, and X directions.

RESULTS AND DISCUSSION

Coherent Structure Near the Clusters

We defined the low-speed streaks as the regions where u, <
-3.0u* (u, is the fluctuating component of the streamwise
velocity), and the high-speed streaks as the region where u, >
3.0u*. The high-speed streaks are regarded as the core of
sweeps. The area in which the absolute values of the
streamwise vorticity are larger than 0.2u**/ v was regarded as
that of the quasi-streamwise vortices based on the DNS study
by Tsujimoto and Miyake (1998).

Figure 2 shows a snapshot of the clusters in black, the low-
speed streaks in dark grey and the high-speed streaks in light
grey in the bottom half of the computational domain. Most
clusters in the first and second rows from the transverse
boundary in the upper left of the domain are found to be inside
or near the low-speed streaks. Several clusters in the third and
sixth rows are inside the high-speed streak. A few clusters in
the fourth, fifth and seventh rows are near the minor low-speed
streaks or the minor high-speed streaks. Many clusters in the
eighth, ninth and tenth rows are near or inside the large-scale
low-speed streak. The lift up and diffusion associated with the
ejection and the bursting are observed in this streak.

In Table 3, the spanwise length and the characteristic time of
the cluster are compared with the spanwise length and the
duration of the streaks in the present computation. The data
with brackets in the table are based on the summary by Meng
(1998). The lengths of the minor streaks and the eruption of
the low-speed streaks mentioned below are found to be
comparable to that of the cluster.

Reynolds Shear Stress Product

Attenuation and Enhancement of Product. Figure 3
demonstrates the contour map of the difference between the
Reynolds shear stress product with clusters and that without
clusters in the plane X," = 15 at the same instant as that of Fig.
2. Broken lines indicate negative values of the difference, thus
decreases in the values of the product. Solid lines indicate
increases in the values of the product.

It is found by comparing Fig. 3 with Fig. 2 that the clusters
near or inside the large-scale streaks enhance and attenuate the
Reynolds shear stress product noticeably. The difference in the
shear stress product reached more than 0.04x** in some
narrow regions. This tendency was also observed in the case
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Figure 2. Snapshot of clusters and streaks (#'=6.0)
( rectangular prism clusters)

TABLE 3. COMPARISON OF SCALES

spanwise length  duration
cluster model 14.7 034<t<13
minor streaks =15 -
high-speed streaks = 60 [< 100] - [=20]
low-speed streaks = 40~70 [100] - [=480]
ejection = 20[10 ~ 30] - [=20]
eruption =15 <4
streamwise vortices = 40 -

where similar cluster models ware inside or near the
streamwise vortices (Hagiwara et al., 1997). Note that the
interaction between the cluster and the streamwise vortices are
not seen explicitly in the contour map because the cores of the
vortices are located above this plane.

On the other hand, the clusters near the minor streaks are
found not to enhance but to attenuate the shear stress product.
The shear stress product decreased more than -0.04u** and
the outward fluctuating velocity +u, attenuated more than 5
percent. These results suggest that the interaction between the
clusters and the minor streaks is different from that between
the clusters and the large-scale streaks.

Streamwise Dimension of Contour. We compared the
streamwise dimension, L,, for the region in which the Reynolds
shear stress product is affected with the distance, L., for the
cluster to be transported for the period through which the
cluster gives the reaction of the drag force, F,)’, on the grid
point. L. was about 0.4k in this case. L, associated with the

316

RSN )

R - WU TR R -

.

X,/h

Figure 3. Contour map of the difference between the
Reynolds shear stress product with clusters and that
without clusters (contour interval = 0.01u*?)

cluster irrelevant to the streaks is shorter than L. On the other
hand, L, associated with the cluster near or inside the streaks
is found to be longer than L, even in the case of minor
streaks. This shows that the modification of the fluctuating
velocity around the distant cluster exerts an influence on the
product through the velocity field even after the direct effect of
the cluster vanishes. This suggests that the transport
mechanism of turbulence is modified by the clusters. The
aforementioned effects of the cluster were also observed in the
case where the initial region for each cluster was the cube.

Minor Streak-cluster Interaction

We focused on the minor low-speed streak located at 4k <
X, < 5h and X, = 1.5h in Fig. 2. This is partly because this
streak has a high possibility to develop into the large-scale
streak, judging from the spanwise spacing of the low-speed
streaks, and partly because the attenuations of the Reynolds
shear stress product and the outward fluctuating velocity are
noticeable.
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Figure 4. Velocity field in the (X,, X;)-plane at X, = 4.9k with
the cross sections of the minor streak and the beads

2.5  X/h 3.0

Figure 5. Velocity field in the (X, X,)-plane at X,= 0.54h
with the cross sections of the large-scale streak and the
beads

Figure 4 shows the velocity field in the (X, X;)-plane at X,
=4.9h, including the cross sections of the minor streak in black
and the beads of the cluster in solid circles. Note that the
diameter of the beads is about three times larger the actual
diameter. The flow from a left-hand side of the streak changed
its direction from transverse to outward near the cluster and the
streak. The cluster was deformed by this change in the flow
direction, and therefore the drag force was generated on the
beads. Then, F,’ acted as a resistance to the outward flow.
Thus, the outward fluctuating velocity decreased, and the
Reynolds shear stress product was attenuated. Since the
spanwise length of the streak is comparable to the cluster
dimension, this attenuation of the shear stress product occurred
in the whole region of the streak. Therefore, the minor streak
became inactive, and the evolution of the streak was prevented.
This is expected to be one of the reasons of the decrease in the
streaks observed by Tiederman et al.

Large-scale Streak-cluster Interaction
A noticeable attenuation of the Reynolds shear stress

product is seen in the region around at X, = 0.54h, X, =2.7h
in Fig. 3. This region corresponds to the tail of the large-scale
low-speed streak. Figure 5 shows the velocity field in the (X,,
X,)-plane at X; = 0.54h including the cross sections of the
large-scale streak in black and the beads of the cluster in solid
circles. As shown in Table 3, this streak has a larger spanwise
length and longer time scale compared with those of the
cluster.

A strong outflow is observed to penetrate the thin streak.
This flow was found to be characterised by the following

events: u, increased with the distance from the wall in the
buffer region, and a converged flow was induced by the
outflow in the buffer region. The streamwise length of the
outflow was not so long compared with the spanwise length of
the flow ( about 15v/u*). The duration was estimated to be
shorter than 4v/u*>. From observations, this flow appears to be
similar to the eruption of the low-speed streaks studied by
Smith and Walker (1995). The eruption is considered to be
followed by a bursting event.

Part of the outflow is found to approach the cluster. The
strong drag force is generated on the beads by the nonuniform
distribution of u, in the eruptive flow. Then, F,’ attenuates the
outflows noticeably. F)’ also enhances the entrainment of
ambient fluid in the dissipative part of the streak into the flow.
The attenuation of the eruptive flow and the enhancement of
the dissipative part cause equalisation of the outward velocity
fluctuation. This equalisation may lead to an attenuation of the
eruption and, therefore, an attenuation of the bursting. This
can be a reason for the decrease in the bursting rate measured
by Tiederman et al.

CONCLUSIONS

Direct numerical simulation was carried out for a turbulent
channel flow with many cluster models of beads and springs
representing highly entangled polymers in the buffer region.
The main conclusions are as follows.

1. The minor streaks, which may develop into large-scale
streaks, was attenuated by the cluster model whose
spanwise length and duration are comparable to those of
the minor streaks.

2. The cluster model attenuates the strong eruptive outward
flows, whose spanwise length scale and relaxation time are
comparable to those of the cluster, associated with the
large-scale low-speed streaks.

3. These effects of the cluster model on the small scale near-
wall coherent structure can be regarded as the cause of the
observation made by Tiederman et al.

The authors acknowledge Dr. R. Nagaosa at National Institute
of Resources and Environment, Japan for his comments on
DNS.
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APPENDIX A

In the second-order central difference scheme with the
interpolation method, the gradient form of the convection term
was evaluated not at the grid point but at half the grid-spacing
in the direction of convection from the grid point. Then the
interpolated value of two adjacent gradient forms in the
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direction of convection was assigned at the grid point between
the two points where the forms were evaluated. This
evaluation satisfies numerical consistency between the mass
continuity and the momentum convection in case of uniform
grid arrangement. Kawamura reported that the computational
results of low-order turbulence quantities and the time change
and the budget of turbulent kinetic energy using this scheme
showed good agreement with the results obtained using the
spectral method even in the case for nonuniform grid
arrangement shown in Table 2.
The convection terms for the velocity of U, are expressed as
follows;
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where U, and Uj are the velocity components in the X, and X;
directions, respectively. The subscripts i, j and k denote the
grid location in the X}, X, and X; directions, respectively.

APPENDIX B

We conducted simultaneous visualisation of the low-speed
streaks and the highly entangled PEO flowing in a duct of 2k
=20 mm in height at room temperature (Imamura et al. 1999).
An aqueous dilute solution of Rhodamine B was injected into
the fully-developed water flow in the duct from a transverse
slot 1.0 mm in streamwise width at 45 degrees on the duct
upper wall to enable visualisation of the low-speed streaks.

A dilute solution of PEO was introduced into the main flow
from the other upstream slot. We adopted small pieces of an
acrylic polymer emulsion colour as tagging material for highly-
entangled PEO in the flow. These pieces were confirmed to
stick to the polymer for a long time in the solution.

The images of the small pieces of the colour and the dye
were captured by a progressive-scan video camera. The output
signal of the video camera was directly recorded into a PC as
digital images through a frame grabber. The Reynolds number
based on the mean centerline velocity was 5.25 x 10°.

It was observed in the captured images that the lifted away
from the wall, the ejection and the breakup of the streaks occur
if the group of colour pieces ( that is highly-entangled
polymers ) is far from the wall and that the streak fluctuation
was clearly attenuated when the group of colour pieces flows
close to the streak. The dimension of the group was in the
range of 0.94 ~1.9 mm.



