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ABSTRUCT

The logarithmic velocity region is considered in zero-
pressure-gradient turbulent boundary layers. We pro-
pose a new definition of log-law region with using the
probability profiles of streamwise velocity fluctuation.
The measure called Kullback Leibler divergence is ap-
plied to distinguishing the probability profiles. The ra-
tio of boundary layer thickness,d, and the upper end
of logarithmic region,éz, is investigated, and also the

Reynolds number dependence of pdf profile is mentioned.

INTRODUCTION

The logarithmic velocity region is considered in zero-
pressure-gradient turbulent boundary layer. One of the
recent interesting topics is the mean velocity distribu-
tion in the overlap region in wall-bounded shear flows.(!)
We have believed so far the log-law velocity profile as
firmly established result in turbulence research, how-
ever, some researches cast doubts about its existence.
At present, we have no answer to the universal scaling
form in the wall bounded shear flows, but even if the
log law; Ut = A-log y* + B, is a good representation of
the experimental data, we still have several questions.
Is the slope A universal constant? Additive constant B
is independent of the Reynolds number, isn’t it? The
researchers use the different values to fit their exper-
imental data. We assume, these disagreements come
from the indistinct definition of the log-law region. It
is not clear how far the log-law region extends from the
wall. The outer edge of the logarithmic region, ér, is
scaled by the boundary layer thickness §, and the ra-
tio 67 /8 is reported to be constant; d;/§ ~ 0.2.%) On
the other hand, Purtel et al. suggested this value is a
decreasing function of the Reynolds number.® So the
purpose of this paper is to give the definition of the log-

law region and then investigate the Reynolds number
dependence of A, B, and dr /6. And also the pdf profile

in the log-law region is discussed.

EXPERIMENTAL CONDITION

In a wind tunnel with a test section 0.32 x 1.06m in
area and 2.6m in length, a typical two-dimensional tur-
bulent boundary layer is generated. The data are mea-
sured at 1900mm downstream from the leading edge
with using I-type probe, of which the sensitive region
is made of tungsten wire whose diameter is 2.5, 3.1,
5.0um and 0.5mm in length. The probe is operated
by a constant temperature anemometer, and the veloc-
ity is sampled during 30sec by 12-bit A/D converter at
10kHZ. The shape parameter and the wake factor in
this experimental condition are plotted as a function of
the Reynolds number in Fig. 1.
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Fig. 1 The shape parameter and the wake factor in this
experimental condition are plotted as a function of the
Reynolds number.
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THE PROCEDURE TO EXTRACT THE
LOG-LAW REGION

The extent of the logarithmic region is classically con-
sidered as an equilibrium region where the total shear
stress is constant.*) But the “equilibrium” is interpreted
here as the condition that the pdf profile of the normal-
ized streamwise velocity component does not change.
That is, the pdf profile remains unique in the log-law
region. We call this idea the invariant assumption of
pdf profile.

When the instantaneous velocity in streamwise com-
ponent is decomposed into mean and fluctuation as & =
U + «', we think about the pdf of normalized velocity;
w = u’'/u,, where u, is r.m.s. value of u’. If the in-
variant region of the pdf profile exist, we regard this
as the log-law region.(* In confirming this assumption,
we used the pdf-equation approximated near the wall
region.
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Fig. 2 The turbulent intensity normalized by the inner
variable is interpolated by Eq. (4) for several Reynolds
numbers, Ry = 1270, 2205, 2890, 3590, 4290, 4700.
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Fig. 3 The coefficients o and §; are plotted as a function
of Reynolds number. The solid lines are a = 0.324- Ry
and f; = 86.32- R, **'.
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The pdf is the expected value of the Dirac’s delta
function in this formula, and it is taken the starting
point;

Prlu) =d(u—u) , w=v'fur, (1

is defined as the fine grained pdf, where u is a normal-
ized random variable and u, is a sample variable.(®) And
then the pdf is defined as

f(up) = (Ps(up)) , (2)

where ( ) denotes an ensemble average. So the invari-
ant assumption is,

0f(up)/0x =0 , Of(up)/0y =0, ®3)

in log-law region. We have derived the log-law profile
from the pdf equation at close to the wall subject to Eq.
(3).(5) The detailed explanation is omitted here, but we
adopted the following rational expansion to interpolate
the turbulence intensity distribution in the log-law re-
gion.

uwf =a+ iyt =)+ BT -+ (@)

The coefficient o means & = lim+_,, uf and v is the
outer edge of the buffer layer. The slope of the loga-
rithmic profile is derived as

A=Capi, (5)

where C is constant; C' ~ 0.2. We make sure whether
Eq. (4) can predict the experimental data, and the
result is plotted in Fig. 2. In the logarithmic region
Eq. (4) can well interpolate the turbulence intensity in
several Reynolds numbers. The coefficients, «, £;, are
plotted in Fig. 3 in which they are a function of the
Reynolds number. The coefficient « is scaled like oo =
0.324 - Ry*! and B, = 86.32- R;**'. Therefore, within
the experimental accuracy, the product of & and i is
constant independent of the Reynolds number, that is,
afy ~ 28.0. Then from the Eq. (5), A is constant
independent of Reynolds number. About the additive
constant B, we are sure from the theoretical procedure
that it depends on the Reynolds number.

Naturally in experimental data analysis, the invari-
ant assumption of pdfs must be a little relaxed. We
extract the region where the pdf has a “similar” profile
but not the “same ” one. The Kullback Leibler diver-
gence (KLD) (7 is used to distinguish the pdf’s profile,
which is defined as,

D(P|Q) =) P(si)log, (P(s:)/Q(s:)),  (6)
{s}

where P(s) and Q(s), {s} = {s1,s2,-- -}, are discrete
probapbility distributions. KL.D has a non-negative value
for any P(s) and Q(s), and it is zero only when P(s)
is the same with Q(s). As KLD has a smaller value,
then P(s) and Q(s) are more similar. That is, it is a
indicator to evaluate how much P(s) resembles Q(s).



RESULTS AND DISCUSSION

We used KLD and extract the log-law region sub-
ject to the invariant assumption of pdfs. The result is
shown in Fig.4. The solid symbols indicate the log-law
region defined by the invariant assumption of pdfs. The
outer edge of the logarithmic region, 0z, is a function of
Reynolds number, then it is plotted in Fig. 5. The ratio
81 /8 is a decreasing function of Ry and it approaches to
0.2. And also the additive constant B is shown in the
graph. This value also shows slight but evident depen-
dence on Reynolds number.
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Fig. 4 Mean velocity distribution for several Reynolds
number flows, Rs = 1270, 2205, 2890, 3590, 4290, 4700,
in which the log-law region is indicated by solid symbols.
The arrows indicate the position where é5/6 = 0.2.
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Fig. 5 Reynolds number dependence of d;, and B.

The pdf profile in the log-law region is investigated
more carefully. A simple way is to compare pdfs with
Gaussian distribution. Figure 6 shows the KLD com-
puted at each position from the wall adopting the ve-
locity fluctuation probability and the Gaussian profile.
The KLD has a minimum value within the log-law re-
gion, which is smaller for the higher Reynolds number,
and also the peak position sensitively depends on the

Reynolds number. That is, the pdf profile is not inde-
pendent of the Reynolds number but suggests approach-
ing the Gaussian distribution in the inviscid limit. Also
this figure shows the invariant assumption is appropri-
ate nature, but in this limit, the invariant assumption
will be satisfied exactly.
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Fig. 6 Kullback Leibler divergence distribution com-
puted by the experimental data and the Gaussian dis-
tribution.

CONCLUSIONS

In zero-pressure gradient boundary layers, we present
the definition of the log-law region as the extent where
the pdf profile of normalized u-component velocity fluc-
tuation remains unique. Although the pdf profile de-
pends delicately on the Reynolds number, the log-law
region is well extracted by the invariant assumption of
pdfs (exactly speaking, this is the relaxed invariant as-
sumption). If the log-law is a good representation of the
experimental data (Ry < 5000), our results are that A
is a universal constant, but B depends on the Reynolds
number. The ratio of the outer edge of logarithmic re-
gion and the boundary layer thickness, ./, is a de-
creasing function of Ry.
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