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ABSTRACT

The continuity and momentum equations do not
imply a Reynolds number dependence of turbulence
data when wall variables are used for normalization.
The influence of the Reynolds number on turbu-
lence quantities results from the imposed bound-
ary conditions at the edge of a boundary layer or
on the axis of a channel or a pipe flow. This has of-
ten been assumed not to affect the near wall region.
However, experimental and numerical results show
a Reynolds number dependence of turbulence inten-
sity very close to the wall. It results from the be-
haviour of a sink term in the dissipation rate equa-
tion which shows a Reynolds number dependence in
the limit of two-component two-dimensional turbu-
lence as it exists close to walls. Away from the near-
wall region the Reynolds number dependence origi-
nates from the streamwise pressure gradient which
enters into the equations for the turbulent kinetic
energy and turbulent dissipation rate through the
gradient production processes. The low-Reynolds
number effects in turbulent channel flow were in-
vestigated experimentally using the LDA measur-
ing technique. A new method was applied to elim-
inate the influence of the limited spatial resolution
of the measuring technique.

INTRODUCTION

Fully developed turbulent pipe and channel flows
are subclasses of wall-bounded flows that have been
extensively investigated in the past. Although we
have collected an impressive body of experimen-
tal data over past 50 years, the overall progress

achieved in the field is slow. In part this is due
to the lack of the appropriate data which could be
used to analyze the complete dynamic equations for
the turbulence correlations. With advances in com-
puter technology it has become feasible to study
turbulent flows by applying numerical techniques.
While there is a general agreement in the literature
about scaling of the mean velocity distribution close
to the wall, there is no physical explanation for
important variations of the fluctuating quantities
when non-dimensionalized using the wall variables.

The goal of this paper is to investigate the influ-
ence of the Reynolds number in the near-wall region
of fully developed channel flows. We will focus our
attention primarily on the region of viscous sub-
layer adjacent to the wall where it is expected that
inner scaling laws should hold by definition for all
turbulence quantities.

In the region very close to the wall high gradients
exist and the questions regarding the data accuracy
and the spatial resolution are most serve for exper-
imental and numerical investigations.

The laser-Doppler (LDA) measuring technique al-
lows accurate experimental data to be obtained deep
in the viscous sublayer provided that the influence
of the finite size of the LDA control volume is taken
into account. Turbulence quantities, measured by
LDA, show dependence on the measuring volume
size and require application of the volume correc-
tions which can be derived analytically. By mea-
suring with different LDA volume sizes the high re-
liability of the turbulence data can be achived close
to the wall even at high Reynolds numbers.
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ANALYSIS OF DNS DATA

ENERGY BALANCE

In this section we shall utilize the numerical data-
bases to examine the influence of Reynolds number
on the terms in the budget for the turbulent kinetic
energy k = 1/2uzus:
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Since in the channel flow convection is negligible,
the balance of (1) consists of production (P), tur-
bulent (7%) and pressure (IIx) transport, dissipa-
tion (€¢) and viscous diffusion (D). This is indi-
cated in figure 1, where we plotted the individual
terms which contribute to the balance of the k equa-
tion for five different Reynolds numbers, Re,,=2900,
4600, 5600, 6700 and 13800, based on the bulk ve-
locity (Uy,) and full width (H=2h) of the channel.
For this purpose databases of Kim et al. (1987),
Kuroda et al. (1989, 1993), Horiuhi (1992), Gilbert
& Kleiser (1991) and Antonia et al. (1992) were
employed. The viscous diffusion (D) is also sensi-
tive to variations in Re but plays passive role and
serves only to satisfy the boundary conditions at
the wall. The turbulent (7%) and pressure (Ilx)
transport are relatively insensitive to the Reynolds
number dependence.
Using the mean momentum equation

+ 77+
L T dU, —utuf
Re‘r diﬂ; 172

the production rate term in (1) may be expressed
as follows:

where Re, is the Reynolds number Re, = u,h/v
based on the half-width (h) of the channel. The sec-
ond term on the right- hand side of (2) originates
from the streamwise pressure gradient, which can
be determined from the shear stress at the wall. As
can be inferred from (2), the production term ex-
hibits a strong Reynolds number dependence even
very close to the wall.
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Figure 1: Balance of the turbulent kinetic energy
in a plane channel flow for different Reynolds num-
bers.

Based on these results, one may conclude that the
source of the observed low Reynolds number effects
in a boundary layer lies in the dissipation equation.
Further analysis of the Reynolds number depen-
dence of the turbulent dissipation rate requires the
introduction and application of the anisotropy in-
variant theory as changes in the Reynolds number
may be reflected in a change of the anisotropy.

ANISOTROPY INVARIANT MAPPING

The anisotropy of the turbulence can be quanti-
fied, according to Lumley & Newmann (1977), us-
ing the anisotropy tensor
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and 1ts scalar invariants:

Ifa = Q4;aj4,

]Ifa = Q;50i505k.

A plot of (13) versus (14) for axisymmetric turbu-
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defines the anisotropy invariant map, which accord-
ing to Lumley (1978) bounds all physically realiz-
able turbulence. It is interesting to analyze the
influence of Reynolds number on the anisotropy of
the Reynolds stresses since it can shed some light on
the dynamics of turbulence in the near-wall region.
Figure 2 shows the effect of Reynolds number on
the anisotropy of the turbulence for channel flow.
There are two noticeable trends in the data that
can be clearly distinguished:
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Figure 2: Traces of the joint variations of I1, and
II1, across the anisotropy invariant map. Data
correspond to a plane channel flow at different Rey-
nolds numbers.

(1) With increasing the Reynolds number the an-

isotropy very close to the wall decreases. Conse-
quently, the invariants, which are lying along the
two-component limit, tend to move towards the left
corner point of the anisotropy map, which corre-
sponds to the two-component isotropic state.
(ii) In the buffer and logarithmic flow regions the
invariants closely follow the right boundary of the
anisotopy map, which corresponds to axisymmetric
turbulence. From figure 2 it appears that with in-
crease in Reynolds number there is a trend in the
data to shift gently towards the limit valid for two-
component turbulence.

We may try to use the above-mentioned infer-
ences gained from the numerical databases in order
to explain the observed low Reynolds number ef-
fects close to the wall which are concentrated in

the dynamic equation for the turbulent dissipation
rate. This is plausible since the dynamics of ¢ are
influenced by the anisotropy of the turbulence. We
shall see later how the Reynolds number depen-
dence of € at the wall actually arises.

DISSIPATION RATE BALANCE

In the studies of Jovanovi¢ et al. (1995,1996),
the two-point correlation technique and the invari-
ant theory were used to examine turbulence closure
for dissipation rate correlations. The results of the
analysis were found to be consistent with the sug-
gestion made by Lumley (1978) that the anisotropy
of turbulence plays an important role in the budget
of dissipation rate correlations. Based on these con-
siderations Jovanovié et al. (1995,1996) derived the
following set of the equations which govern approx-
imately the dynamics of the turbulent dissipation
rate:

€= %yAxk + €n, (3)
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According to (3), the turbulent dissipation rate
€ 1s composed of an inhomogeneous 1/2vA k part
and a homogeneous part ¢;,. The homogeneous part
of the dissipation rate ¢, is directly related to the
Taylor microscale \ as €, = 5rg? /A2

The first two terms on the right-hand side of (4)
approximate the production of €, by the mean ve-
locity gradient. Examination of the limiting be-
haviour of the two-point velocity correlation for the
various states of turbulence permitted the closure
for the generation of ¢; to be expressed in terms
of the anisotropy of turbulence and turbulent Rey-
nolds number:

—2A—ukul%— A= A(Ifa,fffa,R)\) Rx—-ﬁ.
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In two-component turbulence and for arbitrary Rey-
nolds number, the invariant function A has the
value A = 1. For vanishing anisotropy and very
low Reynolds numbers, A = 1. For small anisotro-
py and very large Reynolds numbers A ~ 0, which
is in close agreement with the Kolmogorov’s (1941)
theory of locally isotropic turbulence.

The third term on the right-hand side of (4) is

l/) , Y =y(1la,I11s, Ry),
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an approximation of the difference between the tur-
bulent production and viscous destruction the two
dominant terms in the balance of the dissipation
rate equation.

The fourth term on the right-hand side of (4)
accounts for the turbulent transport. The most
widely used closure for this term

%(a&m%’:), C.~018,  (5)
is analogous to the form used for the interpretation
of the similar term in the energy equation. Us-
ing the scaling arguments outlined by Tennekes &
Lumley (1972), Jovanovié et al. (1996) derived the
alternative closure:
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(6)
In contrast to (5), the use of (6) permits a nearly
perfect balance of the dissipation rate equation to
be obtained from the experimental data measured
near the centreline of a plane turbulent wake flow
at low Reynolds number.

The last term on the right-hand side of (4) is the
viscous diffusion of ¢y.

The asymptotic values of the invariant functions
A, ¢ and J at three corner points of the anisotro-
py invariant map can be matched together using
the invariant theory. Based on the these consider-
ations, the reformulated closure of the dissipation
rate equation given by (3) and (4) can cover the
entire anisotropy invariant map, i.e. all physically
realizable turbulence.

We may now examine the closure of the ¢j, equa-
tion (4) with the aim of isolating the cause of the
previously described Reynolds number variation of
€ near the wall. In the region of viscous sublayer,
the decay term (—we2 /k) of the dissipation rate
equation is balanced by the viscous diffusion term
(1/2vAger). For this reason, only an increase in
1 can raise the viscous diffusion and also ¢ at the
wall. However, the trend in the data extracted from
numerical simulations indicates that the anisotropy
of turbulence at the wall decreases with increasing
Reynolds number. This trend implies a decrease
in ¥ and ¢ at the wall with increasing Reynolds
number.

However, the above consideration does not ac-
count for the effects of the dimensionality of turbu-
lence close to the wall. As the wall is approached
the normal velocity component vanishes much faster
than other two components and the flow is forced
to move in the planes which are parallel to the
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wall. Thus, to a first approximation, turbulence
in the viscous sublayer might be considered as two-
component and two-dimensional. For such a state
¥ may be approximated in the form ¥oc_sp ~
0.02R,. This form eliminates singularity in the sink
term of the dissipation equation when it is applied
to the flow predictions close to the wall. Therefore,
we may conclude that the behaviour of (¥)ap—-2c
very close to the wall is responsible for rise in € at
the wall with increasing Reynolds number.

EXPERIMENTAL INVESTIGATIONS

From the analysis carried out in Section 2 the
reader may come to the conclusion that the numer-
ical databases form a firm basis for investigating
the dynamics of turbulence in a channel flow and
that there is no need for the additional experimen-
tal data in order to clarify the low Reynolds number
effects close to the wall. However, examination of
the budget of the dissipation rate equation close to
the wall reveals noticable discrapencies between the
numerical databases in the near-wall region.

From this arises the question how much of the ob-
served Reynolds number variation is due to phys-
ical effects and how much is based on numerical
uncertainties. For the above reason, it is desir-
able to perform additionally measurements under
well-controlled laboratory conditions and at similar
Reynolds numbers as these deliver flow information
which is independent of numerical limitations.

To study the low Reynolds number effects in fully
developed plane channel flows, a water flow facility
was set up which permitted mean velocities of up
to 2.5 m/s to be obtained. The channel test sec-
tion of dimensions I x b x H = 1 x 0.18 x 0.01 m
was preceded by a rectangular contraction cham-
ber (0.15 x 0.18 m). The measurements were per-
formed 71 channel heights downstream of the inlet
using a laser-Doppler anemometer.

Two different LDA systems were used in the pre-
sent study in order to ensure good spatial and tem-
poral resolution of the measurements.

LDA CONTROL VOLUME EFFECTS

Owing to the spatial distribution of turbulent
fluctuations, the Doppler shift frequency obtained
from each scattering particle does not correspond to
the velocity in the centre of the measuring control
volume but represents the time and volume inte-
grated information. In Durst et al. (1998) equa-
tions for the correction of control volume effects




statistical properties are derived. The ellipsoidal
shape of the control volume and the constant size
of the scattering particles were taken into account.
Taylor series expansion of the mean and the fluctu-
ating parts of the velocity and spatio-temporal in-
tegration delivers the expressions for the measured
mean velocity and turbulent intensity:
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The measured mean velocity turnes out to be very
close to the time-averaged value at the centre of the
measuring control volume as the second derivative
of the mean velocity profile is negligible in close
proximity to the wall. The correction for the tur-
bulent intensity is proportional to the mean veloc-
ity gradient and to the curvature of the intensity
profile near the wall. The sum of both correction
terms enlarges the measured intensity in compari-
son with the value at the centre of the measuring
control volume. Detailed analysis shows that mea-
sured turbulent intensities can be increased at more
than 100% (Durst et al., 1998).

The reliability of the computed values of turbu-
lent fluctuations depends on the accuracy of the
control volume diameter. As the detection of the
bursts is influenced by the size of the scattering par-
ticles, the transmitting and receiving optical system
and the electronical settings of the signal processing
electronics, the effective size of the control volume
is not unique. Therefore preceding measurements
in laminar flows were undertaken in order to cali-
brate the effective control volume size ds. For such
flows (7) deliveres a direct proportionality between
the relative mean velocity gradient and the mea-
sured effective turbulence level:
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R relative mean velocity gradient
effective turbulence level v E

EXPERIMENTAL RESULTS
In Fig. 3 the mean velocity distributions for var-
ious Reynolds numbers are shown. A systematic
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Figure 3: Mean velocity profiles non-

dimensionalized on inner variables

variation in the core region of the flow with increas-
ing Reynolds number can be reported. Of partic-
ular interest was the behaviour very close to the
wall. Analysis of data from DNS have shown that
at the outer edge of the viscous sublayer, the sum
of the pressure drop term and the Reynolds stress
term are nearly independent of Reynolds number
and therefore cannot be resolved experimentally.
According to direct numerical simulations of tur-
bulent channel flow, the streamwise velocity com-
ponent accounts for about 75% of the dissipation
rate at the wall (Kim et al., 1987; Antonia et al.,

1992): (eNwan ~ 1.3 (#ﬁ;)w Therefore the

measurement of streamwise turbulent fluctuations
gives an insight into the influence of Reynolds num-
ber on (€%)yau. In Fig. 4 the RMS-values of the
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Figure 4: Profiles of the RMS values of turbulent
fluctuation measured (top) and corrected (bottom)

corrected data are shown. For the evaluation of
the wall limiting values of the turbulence level, the
near wall data in the region y* < 10 were extrap-
olated to the wall position. In Fig. 5 the resulting
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Figure 5: Plot of determined wall limiting values
for u'/U. Comparison with DNS-data

values extracted from the measurements are plotted
against Reynolds number. Comparison between ex-
periment and DNS results reveals the same trend
but a remarkable deviation in the absolute values
of v//U at higher Reynolds numbers. The mea-
sured turbulent fluctuations can be approximated
quite well by an analytical expression that contains
a limiting value for very high Reynolds numbers
and a subtractive part inversely proportional to the
Reynolds number.

(UI/U)WGU = (UI/U)Wall;Re—)oo - A/Re,- (7)

Fitting of Eq. (7) yields for the constants:
(U//U)Wa[l;Re—)oo =0.40+0.01 A=7.0+£0.5. Ex-
trapolating this result, one would expect the Rey-
nolds number effects to vanish asymptotically above

Repn, & 35000.

CONCLUSIONS

The previous sections have delivered both ana-
lytical results supported by numerical data and ex-
perimental results in the Reynolds number range
between 3,000 and 25,000. Both of these data sets
reveal similar trends with increasing Reynolds num-
ber. The wall limit of u; /U, high Reynolds num-
bers turns out to be 0.4. This value can be used
as a criterion turbulence models at the wall have
to fulfil. Statistical analysis carried out in Section
2 shows that the decay term of the dissipation rate
equation is responsible for the low Reynolds num-
ber effects.

Away from the very near-wall region the Rey-
nolds number dependence of the turbulence statis-
tics is caused by the streamwise pressure gradient
which contribute to the production processes in the
equations for the turbulent kinetic energy and tur-

296

bulent dissipation rate. Anisotropy invariant map-
ing of the Reynolds stress tensor reveals the ten-
dency in the turbulence statistics to shift slightly
from nearly axisymmetric state towards the two-
component state. This trend implies a gentle in-
crease of the turbulent dissipation rate in the buffer
and logarithmic flow regions with increasing the
Reynolds number. Joint application of analytical
and experimental methods has resulted in a valu-
ation of numerical data bases and in an improved
insight into the mechanisms of Reynolds number
effects on turbulent fluctuations near rigid walls.
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