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ABSTRACT

For gas - solid two-phase flows as well as for gas -
liquid systems the correct prediction of fluid and par-
ticle properties is of major relevance. Form the exper-
imental point of view the measurement techniques to
quantify the relevant parameters of the underlying fluid
flow (single phase) can be regarded as highly reliable.
The task is more difficult when trying to get reasonable
data for the characterization of the relevant parameters
of the dispersed phase within a turbulent two-phase
flow. Especially the determination of the turbulence
quantities of the dispersed phase (normal and shear
stresses) has been studied within only a few projects
in the past. In this study the experimental investiga-
tions of Mostafa et al. (1989) were taken as a basis
to compare the Euler/Euler- and the Euler/Lagrange
approach with respect to the predictions of the turbu-
lence properties of the dispersed phase. In these ex-
periments the configuration of turbulent axisymmetric
particle-laden gas jets is considered, which provides the
required measured data concerning the turbulent prop-
erties of the solid phase.

INTRODUCTION

Nowadays, two approaches are mainly used to de-
scribe the dispersed phase in a two-phase flow (solid,
droplet or bubble suspensions). In the so called La-
grangian method the discrete elements are tracked
through a random fluid field by solving their equations
of motion. In the second methodology, both phases
are handled as two interpenetrating continuums and are
governed by a set of differential equations representing
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conservation laws; this approach is named as Eulerian.
In this last context, for establishing the dispersed ele-
ments equations, two possibilities come out. First, the
second phase is considered as a fluid for all effects. This
corresponds to the well-known two-fluid model. Sec-
ond, the non-continuous phase is thought of as a cloud
of material elements, whose behaviour is driven by a
probability density function (PDF), depending on each
element variable, that responds to a kinetic transport
equation similar to the Maxwell-Boltzmann one. The
continuum equation for the second phase is obtained
as the statistical moments of such PDF-evolution equa-
tion.

In spite of the lack of a complete agreement about
the final form of the equations and the constitutive rela-
tions used for the dispersed phase, the Eulerian strate-
gies continue to be attractive from an engineering point
of view because of their simplicity and computational
efficiency.

However, the traditional closures, even giving ap-
proximated values for the mean fields, fail in the pre-
dictions of particle turbulent quantities specially in
nonuniform flows. To overcome this fact considerable
effort has been devoted during the last years to de-
velop turbulence closures at the level of second mo-
ments of the particulate phase (Reeks (1993), Wang
et al. (1997), Hyland et al. (1998), Février & Simonin
(1998)), but those are still in the research stage. As
a matter of fact, the traditional Lagrangian strategies
for modelling the particle phase, grossly underpredict
the streamwise velocity fluctuation of the particles in
nonuniform flows (i.e. jets). On the other hand, the
classical Eulerian methods make no attempt to predict



the particle Reynolds stress tensor.

In previous works (Lain (1997), Lain & Aliod
(1999)), it was suggested that in axisymmetric jet flows
laden with high inertia particles, the streamwise and
transversal velocity fluctuations of the solid phase could
keep the approximate relation, u'*/v'? ~ 10 as soon as
a fully developed flow is reached (here u'? corresponds
to the axial normal stress and v'® to the radial one).
Such a ratio is much higher than the homologous one
for the continuous phase, of order one. The purpose of
this paper is to propose a simple, computationally effi-
cient, disperse phase second order model, that able to
approximately predict the enhacing of the streamwise
normal stress with respect to the tangential and radial
components.

The computational results are compared with the
measurements of Mostafa et al. (1989) giving a reason-
able agreement in all availables quantities.

LAGRANGIAN TRACKING ALGORITHM

The dispersed phase has been regarded within the
Lagrangian framework on the one side. There the single
particle is observed on its way through the flow field by
solving the equations of the particle motion and the par-
ticle position. Performing an order of magnitude analy-
sis of the relevant time scales of the flow system results
in a reduced form of the particle equation of motion ne-
glecting the virtual mass and the basset force. Finally,
the following system of equations has to be solved:

Tt = Ug (1)

3pCp (ui — vi) | us — v | p
ir = - (1-2 )@
Vi, t 4p‘idp +g p‘i ()

The drag coefficient is given as follows:

_ 240 1., 066
Cp = Re, [1.0 + 6Rep ] Rep < 1000 (3)

Cp =0.44 Re, > 1000

In the above equations (Eq. 1 - 3) the superscript
d is used to identify a single particle. The instanta-
neous fluid velocity along the particle trajectory was
obtained by applying the Langevin equation model. Cp
is the drag coefficient (for details, see Sommerfeld et al.
(1993)).

In order to obtain the relevant information about
the underlying flow field the continuous phase has to
be solved as well. Therefore, the time-averaged Navier-
Stokes equations were solved in connection with an ap-
propriate turbulence model. These equations include
particle source terms in order to take into account the
effect of two-way coupling. These source terms were cal-
culated using a modified version of the Particle Source
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in Cell - approximation of Crowe et al. (1977). A de-
tailed description of this procedure is given in Kohnen
et al. (1994).

DISPERSED PHASE TRANSPORT EQUATIONS

Using the Dispersed Elements PDF-Indicator
Function ensemble conditioned average (Aliod &
Dopazo (1990), Prosperetti & Zhang (1994)), the fol-
lowing equations for the dispersed phase, in the context
of isothermal dilute flows (Lain (1997)), are initially
considered:

Mass conservation equation:

[pdad] 2t + [pdadW] =0 4)
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Momentum conservation equation:

[*a'vi], + [paVivi] | = [-a®p"el"|

+ 1P+ £V (5)

Fluctuating kinetic energy equation

B =Tt = i

1.7 .
U

[pdad kd] L+ [ eV, kd] L= [__ ot pd_k,dv;d] )

+ Pt IV (6)

Here, V, o, B are the ensemble averaged dis-
persed elements velocity, volume fraction and fluctuat-
ing velocity with respect to V. p? is the density of the
discrete elements, which is supposed to be constant. I jD
is the standard interaction term due to the aerodynamic
drag, the volumetric forces f;w take into account the
weight and the buoyancy. P? is the standard produc-
tion term also found in single phase flows and I'" is the
fluctuating work exchanged with the fluid.

Now it is worth to recall the closure used for I":

S
TL + 01;1
7L =04% )

1" = Cpa’p® (k6 — k%) ; 6=

where Cp is again the coefficient of the standard drag
law for monodispersed spherical particles of diameter
dp, as it is already defined in eq. 3. It should be stressed,
that the particle Reynolds number Re,, appearing in
this equation, is based on the relative velocity between
both phases and p is the fluid viscosity. The inverse of
Cbp is just the response time of the particle, 7.

The performance of the closure (7) in axisymmetric
jets laden with high inertia particles has been assessed
in Lafn (1997), where a pretty accurate prediction of k¢



is obtained for a set of experiments in such a configu-
ration.

The transport equation governing the particle ve-
locity correlations can be found in different works, for
example Simonin (1991). For dilute flows, neglecting
collisions between the discrete elements, it can be writ-
ten:

D (pdadvgv;- ) .
— ®)

where Dy, ;; Tepresent the transport by particle ve-
locity fluctuations of the stresses, Pf’j is the production
contribution (which does not need to be positive de-
fined):

dpd | W
= Dyryr 35 = & Pij + L

d d [—4 —d
Ph = —p (v;u;,l Viim + U0 w,m)

)

and I};V is the exchanged work rate between the dis-
persed phase and the fluid which is expressed as:

IV = ap*Co (—21}21);." +ujv) + u;vgu) (10)
u’ states for the fluid fluctuating velocity with respect
to the ensemble averaged value U =T.

Following the theoretical work of Reeks (1993), in
the limit of large inertial particles in simple shear flows,
the Boussinesq-Prandtl hypothesis is feasible for mod-
elling the particle shear stresses. They are split up in an
homogeneous component, whose structure is the same
as if the local carrier flow would be homogeneous, and
a deviatoric component involving terms proportional
to the mean shear of both, the dispersed and carrier
flows. However, for long particle response times, the
deviatoric component dominates over the homogeneous
contribution reaching a finite value of —%eoo 5S¢, where
€co is the long-time particle diffusion coefficient in the
transverse direction and S¢ the shear gradient of the
dispersed phase. In addition, in this limit the diffusiv-
ity momentum coefficient, ud, is said to be proportional
t0 €0o. Therefore, despite the fact, that the diffusivity
momentum should be a tensor, u® can be written as
an scalar quantity in the limit. In this context, the fol-
lowing expresion for the particle shear stresses can be

written:
(11)

with p¢ o« p?ulvl Cp' and (z,r) denote the axial and
transversal coordinate, respectively. The closure out-
lined above, eq. 11, will be taken as a basis for the
following cases considered in the present work.

—d
—pP bt = pt [Varr + Vii]

ALGEBRAIC PARTICLE STRESS MODEL (APSM)
As the simplest approximation, an algebraic model

formulation for the particle normal stresses can be pro-

posed extending the ideas of the Algebraic Stress Model
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(ASM) developed by Rodi (1972) for single phase flow.
It is assumed, that the sum of convection and diffusion
terms of the Reynolds stresses, W (the sum is not
understood on the repeated index ¢), is proportional to
the sum of the convection and diffusion terms of the
turbulent kinetic energy k.

D (pdadvivgd)

Dt - Dv’v"ii
vl (D (ptak?)
~ kd Dt - Dkd
1oyl
= % (a*P? +1%) (12)

where D« represent the transport by particle velocity

fluctuations of k¢. Introducing the approximate bal-

ance for the normal shear stresses (into the equations 6

and 8) leads to:
——d kd
Y

~ dpd , W
Vi N apd W (a*Pi+ 1Y)

(13)
Here, the only non-closed terms appear in the fluid-
particle correlation included in I}} (eq.10). Février &
Simonin (1998) have worked out several methods for
handling this fluid-particle correlations, deriving alge-
braic as well as differential equations for them. Unfor-
tunately, the required CPU time increases fast as the
number of equations increases.

The approach proposed in this work is simpler. A re-

lationship between the fluid-particle correlation, u;v; ,

and the fluid and particle stresses is assumed in the
following way:

—a 1

—_—  —
wp’ = 3 (vl + W, 61 (14)
where the tensor 6;; is written as:
by = 2Tl ™% )
v 1+ Cp7;’ This =Yg

with Cz = 0.4. Eq. 15 can be seen as a natural ex-
tension of eq. 7. Inserting eq. 15 into eq. 10 yields the
following expression for I} :

¥ = adpicy (W - U—J") (16)

Equations 11, 13, and 16 constitute a system of
three equations for the particle normal stresses, that
can be solved, if expressions for the fluid stresses and
k? are provided.

The results are shown in the Figure 1. There, the
particle normal stresses, the axial (v'*) and radial com-
ponents (v'2), are shown in comparison with the ex-
periments of Mostafa et al. (1989) and the output of
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Figure 1. Normal particle Reynolds stresses for the experiments
of Mostafa et al. (1989) in two transversal sections: X/D = 6.2
(left) and X/ D = 12.45 (right) versus the output of the APSM
and Euler-Lagrange approach (E-L). u'? corresponds to the axial
streamwise direction and v'2 to the transversal direction.

the classical Euler-Lagrange approach for two sections,
X/D = 6.2 and X/D = 12.45. X denotes the distance
downstream the nozzle and D its diameter. It is neces-
sary to point out that the Euler-Lagrange calculations
provide good enough values for all the fluid variables,
including the Reynolds stresses and the mean veloci-
ties of the particles, but they underpredict considerably
their axial fluctuating component. This is a typical situ-
ation, that also appears in the classical two-fluid model
(cf. Issa & Oliveira (1998)).

While the results for the transversal direction are
similar in both strategies of calculus (even the Euler-
Lagrange method seems to work a little bit better), the
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situation is different for the streamwise component. In
both cases, it is underpredicted, especially in the sym-
metry axis, but the APSM version is noticeably closer
to the experiments.

Despite the fact, that the performance of APSM
is not good enough, the improvements achieved are en-
couraging to think, that a simplified Reynolds Stress
Particle Model can enhance even more the quality of
the predictions. This task will be carried out in the
next section.

REYNOLDS STRESS PARTICLE MODEL (RSPM)

The model proposed is based on the set of equa-
tions 8 including the definition of eq. 9 and the clo-
sure of eq. 16. Moreover, as already mentioned, the
closure defined by eq. 11 for the shear stresses will
be assumed in the context of non-uniform, strongly
anisotropic flows laden with high inertia particles.

The term representing the transport by particle ve-
locity fluctuations in eq. 8 is closed by, for practical
purposes, using a Boussinesq approximation:

d
—d
Dyryt ij = [adg—d [vgv;. ] k] (17)
LA

This includes an implicit summation in k. afj are the
turbulent Schmidt numbers. In this case we only need
to consider 7 = j. The values chosen here have been
ol =03 and 6% = 0, = 1.0 (w is the azimuthal
direction). The selection of 0%, was suggested for the
value used in the k¢ equation (Lain (1997)), while for
the others the simplest value is assigned since the per-
formance of the RSPM does not depend appreciably on
them.

In summary, the proposed RSPM consists of a sys-
tem of three equations (Eq. 8 with ¢ = j), one definition
for the production contribution, eq. 9 and the closure
approximations, eqn. 11, 16 and 17.

The comparisons with the experiments of Mostafa
et al. (1989) are shown in Fig. 2 for the two transver-
sal sections X/D = 6.2,12.45. There, the calculated
profiles for the three particle normal stresses and the
kinetic energy calculated from them are plotted ver-
sus the experimental data. It is remarkable, that the
anisotropy of the stresses is reasonably well captured, in
spite of the simplicity of the model, which only presents
three extra equations with respect to the standard mod-
els.

Figure 3 shows the different contributions of eq. 8

in the section X/D = 12.45, for v'* = vhoh’, vt =

——d 2 _ 57— d . . .
vlol and w'° = vi,vl, : convection, diffusion, produc-
tion and interaction. Their arrangement is:

Convection = Dif fusion + Production + Interaction

(18)
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Figure 2. Normal particle Reynolds stresses for the experiments
of Mostafa et al. (1989) in two transversal sections: X/D = 6.2
(left) and X/D = 12.45 (right) versus the output of the RSPM.
In addition to Figure 1 w'? corresponds to the azimuthal direction
and k¢ = 0.5/(u'? + v + w'?).

Besides, the residue of adding all this contributions
is shown in these Figures. The axial stress reveals a
principal equilibrium between the convection and in-
teraction terms, modulated by the diffusion and pro-
duction. This fact is very similar to the result obtained
for the k¢ equation (Lafn (1997), Lain & Aliod (1999)),
which is not surprising, because in such an anisotropic
configuration «'“ is mainly responsible for the devel-
opment of k%. It is worth to note, that the shape of
the interaction term is very similar to that obtained
by Wang et al. (1997) in a channel flow using a more
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Figure 3. Snapshots of the terms present in the equations for the
normal stresses of the dispersed phase in the axial station X/D =
12.45 of the experiments of Mostafa et al. (1989).



comprehensive formulation in connection with LES.

In the case of v'? and w'? the four contributions are
of the same order. It should be noted, however, that
the production terms are negative and the interaction
terms positive. This can be interpreted in the case of v'?
as follows: The interaction of particles with the fluid,
IY provides the necessary energy for the expansion of
the dispersed phase in the jet along the radial direction,
represented by the interaction between the own radial
stresses and V., which is consistent with the results of

Lain (1997).

CONCLUSIONS

In the present study we compared differ-
ent Eulerian-Eulerian strategies with an FEulerian-
Lagrangian strategy with respect to their applicability
to predict the particle normal and shear stresses. Con-
cerning the Eulerian-Eulerian method a simple model
was developed in order to describe the anisotropy of
the aforementioned turbulent quantities and applied to
a jet flow. It was demonstrated, that the APSM was
not able to predict this anisotropy in a satisfactory way.
Only the more advanced RSPM shows a reasonably
good agreement with the underlying experimental data.
Even the Eulerian - Lagrangian method reveals some
difficulties in the prediction of these second order terms
for the particles. Some work has to be done in order to
solve this problem. In addition, resolving the individ-
ual terms in the transport equation for the particle ve-
locity correlations indicates, that the production term
of the axial component is positive and the other two
components are negative. This could be explained by
an energy transfer among those components. In the fu-
ture, a closure for the fluid particle correlation obtained
by PDF will be included applicable for inhomogeneous
flows as well. Moreover, the model has to be validated
against additional experimental configurations.
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