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ABSTRACT

The purpose of this paper is to present a statistical model
based on a kinetic PDF equation for predicting transport of
arbitrary-density particles in two-phase turbulent shear
flow. The model developed is used to simulate the motion
of particles and bubbles in both homogeneous sheared and
pipe flows.

INTRODUCTION

Much progress in the theory of two-phase turbulent flows
which has been achieved up to now relates mainly to gas-
solid flows. Such flows are characterized by very large
values of the ratio between the densities of the dispersed
particulate and continuous fluid phases. The theory of two-
phase turbulent flows at small ratio of the particle density
to the fluid one is developed to a less extent. This fact is
connected with two major causes. The first is of necessity
take into consideration the instantaneous forces acting on a
particle by the surrounding fluid flow field to predict the
particle-turbulence interaction, because turbulence controls
particle motion in this case not only by means of the
fluctuating drag force, whereas those are negligible in two-
phase gas-solid flows. The second cause can be attributed to
effects induced by interface deformation and bubble
compression in gas-liquid flows. In this paper, the influence
of instantaneous forces on interactions between particles
and turbulent fluid eddies is only considered. The particles
(bubbles) are assumed to retain their form, and the ‘back-
effect’ of particles on fluid turbulence is not allowed for.

As an efficient approach to describe the transport of
particles in the Eulerian continuum modelling manner,
introducing the probability density function (PDF) of the
particle velocity distribution can be regarded. The statistical
method based on the PDF is a more consecutive and
accurate way to generate the continuum conservation

equations for the dispersed phase in comparison with the
traditional deterministic method since it makes possible to
avoid the usage of any additional heuristic assumptions to
close the governing transport equations. Kinetic equations
for the PDF of particle velocity were deduced by Derevich
and Zaichik (1988), Reeks (1991, 1992), and Zaichik
(1997). In those papers, the only drag force of all interfacial
forces acting on a particle was allowed for, and,
consequently, the kinetic equations obtained there are valid
mainly in the case of motion of heavy particles in the gas. In
the present paper, equations for the PDF and its moments,
which describe particle-turbulence interactions with
accounting for instantaneous forces and therefore retain
validity within full range of values of the ratio between the
particle and fluid densities (from heavy particles in the gas
to bubbles in the liquid), are proposed.

KINETIC EQUATION FOR THE PDF
The motion of a single spherical particle in a fluid
turbulent flow field is given by the following equations
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where R, and v, are the Lagrangian position and the
velocity of the particle, u is the fluid velocity, p; and p,
are the fluid and particle densities, d, is the particle
diameter, v is the fluid viscosity, and 7, is the particle
relaxation time. The second equation in (1) describes the
balance of forces acting on the moving particle. The terms
on the right-hand side are respectively the interfacial drag,
the forces due to fluid pressure gradient and added virtual
mass, the Basset history effect, the shear-induced lift force,
and the gravity-buoyancy force.

Let P(v,x,t) be the PDF of particle velocity. From the
particle evolution given in (1), this PDF evolves by
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The terms on the right-hand side of (2) describe the
interaction between particles and turbulent fluid eddies
according to the interfacial forces in (1).

With a view to determine the correlation between the
fluctuating fluid velocity and the particle probability density
{ujp) in (2), the fluid velocity field is modeled by a
Gassian process with a known autocorrelation function.

Then, with the help of the Furutsu-Novikov formula for
Gassian random functions we obtain
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To find the functional derivatives in (3) we use a solution
to (1) by neglecting the shear-induced lift force. Taking the
Laplace transform yields from (1)
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where s denotes the variable in the Laplace transform.
Operation of convolution gains from (4)
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where @(1) = L7'[¢(s)] is the Greene function.

Applying a functional-differentiation operator to (5) yields
a set of integral equations for the functional derivatives
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where H(x) is the Heaviside function: H(x<0)=0, H(x>0)=1.
To solve integral equations (6) and (7), we apply an
iteration procedure with respect to fluid velocity
nonuniformity. In this way, one can derive
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The coefficients fu*, gus, lw*, hyx in (8) characterize an
entrainment of particles into the fluctuating motion of the
carrier fluid, namely, they indicate whether the particle
responds to turbulent velocity fluctuations and determine
the degree of coupling between the fluid and particulate
phases. To calculate these coefficients one has to determine
the velocity correlation of fluid motion along a particle
trajectory. If the velocity autocorrelation function is
described by the frequently used exponential dependence
P, (&) =exp(-£/T,,), the entrainment coefficients in (8)

are given by
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The two first terms on the right-hand side of (8) describe
the eddy-particle interaction in a homogeneous unsheared
flow, and the three last terms characterize the effect of
velocity gradients. Correlation (8) has the same form as
(u/py obtained by Zaichik (1997), however, the

entrainment coefficients in (8) take into consideration the
influence of instantaneous forces on the mechanism of
eddy-particle interactions.

From (8), the fluid-particle velocity correlation moments
are found
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Further, using a Liouville equation for a particle ensemble
in phase space and neglecting by some terms of the higher
first order derivatives of the PDF, we present the
correlation (f,;p) in (2) as
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For simplicity, (fyp) is disregarded in (2) because, as a
rule, the Basset force does not contribute significantly to the
balance of forces exerting on a particle and, in contrast to
those due to pressure gradient and added mass, not cause
any essential effect, but only slightly mitigates the influence
of instantaneous forces. For high Reynolds number, the
correlation between the lift force and the particle
probability density is approximately given by
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Substituting (8), (10), and (11) into (2) yields the
following closed kinetic equation of the particle velocity
distribution in turbulent shear flow
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Equation (12) is accurate up to the second-rank
derivatives. The terms on the right side describe the
diffusion transfer in phase space caused by particle-
turbulence interactions. In the limit of very small fluid
density compared to the particle one (p¢/p, = 0), (12)

reduces to the kinetic equations derived before by Derevich
and Zaichik (1988), Reeks (1991), and Zaichik (1997).

GOVERNING EQUATIONS OF THE DISPERSED PHASE

From (12), we can gain a set of governing equations that
represent the conservation of mass, momentum, and
particulate turbulent stresses as the appropriate statistical
moments of the PDF
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Here @ and V, denote the particle averaged volume

fraction and velocity. Equations (14) and (15) are written
with an accuracy of the first-order velocity gradients. The
first term on the right-hand side of (14) characterizes the
turbulent migration (‘turbophoresis’) of particles due to
gradients of both particulate and fluid turbulent stresses.
The last term in (14) represents the particle turbulent
diffusion.

Equation (15) describes the time evolution of the velocity
second-moments, the convection and diffusion transfer, the
generation from the average motion owing to velocity
gradients, and the exchange of fluctuations between the
particulate and fluid phases due to interfacial forces. For
small particles or homogeneous unsheared flows, all the
differential terms describing transport processes can be
neglected, and (15) constricts to the following simple
relation between the particulate and fluid turbulent stresses
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Relationship (16) coincides with the familiar formula for
the particle kinetic energy in isotropic homogeneous
turbulence (Hinze, 1959).

If we use (16) to determine the particle velocity variance,
the migration acceleration resulting from the particle-
turbulence interaction will be given by
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As is apparent from (17), very heavy particles (A—0,
M>0) migrate from high to low regions of the fluid
turbulence energy. However, the migration coefficient M
alters its sign, and hence the migration force changes its
direction at A=1 and A =1/ Q.. Therefore, fairly inertial

particles (A<l, Q  >1/A) and rather small bubbles
(A>1, Q  <1/A) migrate from low to high regions of the

turbulence energy. Of particular interest is that sufficiently
large bubbles (A>1, Q  >1/A) displaces due to the

migration force similarly to heavy particles from a high-
level turbulence energy region into a low-level turbulence
zone. When p, /p; = 1 (A=1), as it should be expected, the

migration force vanishes.

EDDY-PARTICLE INTERACTION TIME

A tesponse of particles to the fluctuating motion of the
carrier fluid is characterized by the ratio of the particle
relaxation time to the fluid turbulence time scale defined
along a particle trajectory (the so-called eddy-particle
interaction time). For very small (non-inertial) particles, the
eddy-particle interaction time, Ty, coincides with the
integral Lagrangian turbulence scale for a fluid point, Ty,
however, for sufficiently inertial particles, Ti, can differ
essentially from Tp. In this paper, Ty, is determined on the
basis of the familiar Corrsin approximation for predicting
relation between the Lagrangian time autocorrelation
function along a particle path and the Eulerian space-time
velocity correlation function in a stationary, homogeneous,
isotropic turbulent field

Wi (1) = [FE (.0 ¢, (D), Wiy (1) = [ WE(r, )¢, (r,v)dr

where ¢ and n mark the directions to be parallel and
orthogonal to the mean relative velocity between particle
and fluid W = V-U . For the purpose of deriving simple
explicit relations for the Lagrangian velocity correlations,
the probability density of the particle displacement r after
time t is taken in the form of the Dirac delta-function

¢, (r,7) = S[r - Wt - i":}j_%s]

where u, is the turbulence intensity, and s denotes the unit
vector in the direction r. The function w(t) that describes

an effective run path of the particle in its fluctuating motion
can be determined from a solution to equation (1). Then,
accounting for only the two first forces in (1) as the most
substantial ones, we obtain the following approximation

w(1) = T+ (1= A)t,[exp(-1/7,.) - 1]

Representing the Eulerian space-time velocity correlation
functions in the usual fashion for isotropic turbulence and
using exponential approximations, we find the Lagrangian
autocorrelation functions and corresponding turbulence time
scales. Figure 1 shows the influence of the Stokes number,
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St=1,/T; where T; is the Eulerian time macroscale,

and the factor A, which includes the densities ratio and the
added mass coefficient (hereafter C, is taken as 0.5), on

the particle-eddy interaction time when the ‘crossing
trajectories effect’ is absent (W =|W|=0). It is seen a
monotonous increase in Tip with increasing St for heavy
particles (A<1). Naturally, Ty,=Ty for A=1 when p, =p; .

For light particles or bubbles (A>1), a decrease in Ti,p
occurs when St increases. In Fig. 1, the results of our model
are added for comparison by the approximation obtained by
Wang and Stock (1993) for heavy particles moving in the
gas (A=0).

08t 4 s

0.4 L " n N
0 1 2 3 4 St

Figure 1. Influence of the Stokes number and the factor A
on the eddy-particle interaction time:1- A=0,2 - 0.5,
3-1,4-2,5-3;6-Wang and Stock (1993).

The ‘crossing trajectories effect’ causes a decrease in Ty,
with increasing the drift velocity, and, in the limit case of
W /u, >, the following simple relations result for

arbitrary-density particles (Csanady, 1963)
Tf, =L/W, Tf, =L/2W (18)

HOMOGENEOUS SHEAR FLOW

The flow is assumed to be realized in the streamwise
direction, X, and is characterized by a constant gradient of
the fluid velocity (G, = dU, /dy ) in the normal direction,

y. Fluid velocity characteristics are given in accord with
experiments by Tavoularis and Corrsin (1981) for an nearly
homogeneous shear flow. Figure 2 demonstrates the
behavior of the stremwise velocity fluid-particle covariance
and particle variance, predicted respectively according to
(9) and (15) at B=0, in dependence on the particle inertia
parameter )+, the density factor A, and the shear
parameter S, =T, dU, /dy.

As shows Fig. 2(a), the streamwise velocity fluid-particle
covariance of heavy particles reduces with increasing
particle inertia in both the absence and the presence of
mean velocity gradient. For bubbles (A=3), the effect of
mean shear is of opposite tendency and results in a decrease
in {u,v.). Velocity gradient effects particularly profound

for bubbles in respect to the shear fluid-particle correlation,
and (u;v;) can be even opposite in sign to {uyuj ).
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Figure 2. Velocity fluid-particle (a) and particle
variance (b) in the homogeneous shear flow:
1,2-A=0;3-A=1,4,5-A=3; 1,4 - 5;=0; 2,5 - Sy=1.

The influence of velocity shear on the particle velocity
variance for heavy particles and bubbles is also found to be
opposite. Figure 2(b) shows that the streamwise velocity
fluctuations of heavy particles in sheared flow can elevate
over the fluid ones, whereas the transverse particle velocity
fluctuations are smaller than those in the fluid. The
opposite tendency is observed for bubbles, and so the mean
velocity shear decreases the streamwise bubble velocity
fluctuations, while the transverse bubble fluctuating
velocities can exceed the corresponding fluid ones.

BUBBLE DISTRIBUTION IN A VERTICAL PIPE

The model proposed is also employed for predicting
behavior of bubbles in a vertical, fully developed, round
pipe flow. Because of practical importance, numerous
experimental investigations of bubble flows in pipes have
been performed. As a result of these studies, a number of
interesting phenomena has been revealed. One of the most
remarkable phenomena is of considerable nonuniformity of
void fraction distribution across the pipe section. So, in
downward flow, the maximum of void fraction profile is
located, as a rule, in the pipe center, whereas the void peak
shifts towards the wall in upward flow.

Characteristics of fully developed pipe flow are only a
function of the radial coordinate, r, and do not depend on
the longitudinal coordinate, x.. The turbulent stresses of the
bubble phase are taken in the locally-homogeneous
approach by means of (16). In this case, the bubble
distribution across the pipe section is governed by equation
(14) for the radial momentum component
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Figure. 4. Comparison between predicted (1,2) and

measured (3,4) velocity fluctuations: 1,3 - J; =0.376 m/s,
Jg =0.112 m/s; 2,4 - J, =1.391 mJ/s, Jg =0.347 m/s.

As can be observed from (19), the void fraction
distribution in a vertical pipe flow is formed under the
action of the turbulent migration and lift forces.

With the proviso W >>u. where u. is the friction
velocity, the eddy-bubble interaction time is prescribed

according to (18), and the turbulence integral space scale is
assumed to be of L =01D. Thus, the bubble inertia

parameter that controls the degree of coupling between the
fluid and bubble phases is determined as
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and, hence, if the drag coefficient may be taken as a
constant, Q. is only a function of the bubble size

compared to the pipe diameter, D.

Figure 4 depicts both experimental distributions of
bubble/fluid streamwise velocity fluctuations across the
pipe section (Liu and Bankoff, 1993) and predictions
according to (16) along with (20) at C, = 0.5 . The bubble

fluctuating velocities are seen to be considerably in excess
of the fluid ones, and measured and predicted values are in
reasonable agreement. Thus, we can draw the conclusion
that relation (20) can be used for making plausible
evaluation of the bubble inertia parameter.

Integration of (19) yields
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where the - and + signs relate to upward and downward
flow, respectively.
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Figure 5. Comparison of simulated (1) and measured (2)
void fraction distributions for upflow (Liu and Bankoff,
1993)at J, =1.391 m/s and J, = 0.347 m/s.
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Figure 6. Comparison of simulated (1) and measured (2)
void fraction distributions for downflow (Wang et al., 1987)
at J; =0.71m/sand J, = 0.10 m/s.

Equation (21) represents the void fraction distribution as a
product of two factors, the first of which describes the
profile forming due to the lift force, and the second results
from turbulent migration. The influence of the lift force on
void fraction profiles depends on the flow direction,
namely, the lift force causes an accumulation of bubbles
near the wall in upward flow, whereas it tends to shift
bubbles towards the pipe center in downward flow. As
mentioned before, small and large bubbles migrate in
opposite directions. So small bubbles accumulate in regions
of high turbulence energy, whereas large bubbles locate in
regions of low turbulence energy. On the whole, it is
evident that the shape of actual void fraction profiles
formed under the action of both forces is a function of the
bubble size as well as the flow direction.

Figures 5 and 6 present comparisons of calculated radial
distributions of the void fraction with experimental data
obtained respectively for upward and downward flows.
Simulations have been performed for real conditions that
were realized in these experiments. The lift coefficient in
(21) is of a mean value recommended in Wang et al.
(1987), C,_=0.05. It is evident a qualitative accord

between calculated and measured void fraction
distributions. The lack of good quantitative agreement can
be apparently explained by failure to take account of the
‘back-effect’ of bubbles on fluid turbulence.
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SUMMARY

A statistical model based on a kinetic equation for the
PDF for predicting transport of arbitrary-density particles in
turbulent shear flows has been developed. The proposed
kinetic equation is used to derive the continuum governing
equations that represent the conservation of mass,
momentum, and particle turbulent stresses.

A turbulent migration force acting on a particle by
nonuniform fluid turbulence has been specified. The action
direction of this migration force is revealed to be dependent
on both the particle density and its size.

The model predicts that the velocity fluctuation intensities
of heavy particles in sheared flow can exceed the fluid
turbulence intensity in the streamwise direction but are
smaller in the transverse direction. The opposite tendency is
revealed for bubble flow, and so the mean velocity shear
decreases the streamwise bubble velocity fluctuations,
while the transverse bubble fluctuating velocities can
elevate over the fluid ones.

The model proposed gives plausible description of
measured void fraction distributions in vertical pipe flows,
in particular, predicts a peak of void fraction profile near
the wall in upward flow and its shift towards the pipe
center in downward flow.
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