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ABSTRACT

A stochastic inter-particle collision model to be applied in
the frame of the Euler/Lagrange approach is introduced,
which accounts for the correlated motion of particles in
turbulent flows. The model relies on the generation of a
fictitious collision partner, whereby no information is
required on the actual position and direction of motion of the
surrounding particles. The occurrence of a collision is
decided based on the collision probability according to
kinetic theory, but considering the correlation of the
velocities of colliding particles. For validating the collision
model results from large eddy simulations are used for
monodisperse particles and a binary mixture of particles
being dispersed in a homogeneous isotropic turbulence.

INTRODUCTION

Turbulent gas-solid flows with high particle loading are
frequently found in technical and industrial processes.
Examples are pneumatic conveying, fluidized beds, vertical
risers, particle separation in cyclones, mixing devices, and
others. In such particle-laden flows the particle behavior may
be considerably affected by inter-particle collisions in
addition to aerodynamic transport and turbulence effects if
the mass loading is high or regions of high concentration
develop as a result of inertial effects (Sommerfeld, 1995).
Quite a number of theoretical studies on the collision rate of
particles or droplets in turbulent flows have been published
in the past. A detailed review was given for example by
Williams and Crane (1983) and Pearson et al. (1984). Here
only the limiting cases are considered which are also
compared with the model calculations presented in this
paper. In turbulent flows the two limiting cases may be
identified by using a particle Stokes number which is defined
as the ratio of particle response time, T,, to the relevant time
scale of turbulence, T, :

T
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For particles which are small compared with the smallest
scales of turbulence, i.e. the Kolmogorov length scale, and
completely follow the turbulence (i.e. St — 0), Saffman and
Turner (1956) have provided an expression for the collision
rate of droplets in atmospheric turbulence. The collision rate
(i.e. collisions per unit volume and time) for two droplet size
classes with the radii R, and Rp; and with the number
concentrations n; and n, (i.e. particles per unit volume) is
given by:
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where € is the dissipation rate of turbulent energy and v is
the kinematic viscosity. Hence, for this limiting case the
collision rate depends solely on droplet size, concentration
and the local velocity gradient.

The other extreme case is the kinetic theory limit for St
— oo, where the particle motion is completely uncorrelated
with the fluid and hence the velocity of colliding particles is
also uncorrelated. This case was analysed by Abrahamson
(1975) for heavy particles in high intensity turbulence. The
resulting collision rate between two particle classes is given

by:
3
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where o, is the fluctuating velocity of the particles
assuming that all components are identical (i.e. isotropic

D=
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fluctuating motion o, =u, =v, =w, ). In practical two-

phase flows the two limits are rarely met, rather the particles
may partially respond to turbulence. Hence, the velocities of
colliding particles will be correlated to a certain degree,
since they are transported in the same turbulent eddy upon
collision. The degree of correlation depends on the turbulent
Stokes number defined above (Eq. 1). An analysis of this
effect was performed by Williams and Crane (1983) and an
analytic expression for the collision rate of particles in

265



turbulent flows covering the entire range of particle Stokes
numbers and accounting for a possible correlation of the
velocities of colliding particles. The expression for the
collision rate is given in terms of particle concentration,
particle relaxation times (i.e. Stokes numbers), turbulence
intensities, and turbulent scales.
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Here L, is the integral length scale of turbulence, U, the
mean relative velocities between colliding particles and o,
the fluctuating velocity of the fluid assuming isotropic
turbulence. The Stokes number of the two particle classes is
defined in terms of the integral time scale of turbulence.

Modeling of inter-particle collisions in the frame of the
Euler/Lagrange method for the numerical calculation of two-
phase flows has been based mainly on two approaches, a
direct simulation and a modeling concept based on kinetic
theory of gases. The most straight forward approach to
account for inter-particle collisions is the direct simulation
approach (Tanaka and Tsuji 1991). This requires that all
particles are tracked simultaneously through the flow field.
Thereby, the occurrence of collisions between any pair of
particles can be judged based on their positions and relative
motion. Once a collision occurs the change in linear and
angular particle velocities can be determined by solving the
equations for the conservation of linear and angular
momentum in connection with Couloumbs law of friction.

For practical calculations based on the Euler/Lagrange
approach stochastic inter-particle collision models are more
suitable (Sommerfeld and Zivkovic, 1992; Oesterle and
Petitjean, 1993). This approach is based on the generation of
a fictitious second particle according to the local probability
density functions of particle diameter and velocities. With
this information the collision probability in analogy with
kinetic theory of gases can be determined. From the value of
the collision probability it is decided whether a collision
takes place. By solving the conservation equations for linear
and angular momentum the post-collision velocities of the
considered particle are calculated. The post-collision
properties of the fictitious particle are not of further interest
in the calculations. So far in most of the modeling
approaches, the correlation of the velocities of colliding
particles was not respected.

In the present paper a model is presented which accounts
for the correlation effect Sommerfeld (1998). The model
calculations are validated on the basis of data obtained by
large eddy simulations (LES) for an isotropic homogeneous
turbulence (Lavieville et al. 1995; Gourdel et al. 1998).

FLUID FLOW AND PARTICLE TRACKING

In both test cases considered here, the flow field, i.e.
turbulence intensities and turbulence length and time scales
are prescribed according to the LES. The mean continuous
phase velocity is zero in both cases. The particle trajectories
are calculated sequentially and the particle phase properties
are ensemble averaged for each control volume of the
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computational domain. The forces which are considered in
the equation of motion for the particles are the drag and
gravity forces only. Hence the following ordinary differential
equations are solved along the particle trajectory:

dt ®)
du, 3 L= =] =
Ttl:Z pPpDP <y (u—ul,)|u—upl+g

For the drag coefficient the standard correlation is used
(Sommerfeld, 1995). In order to generate the instantaneous
fluid velocity along the particle trajectory the so-called
Langevin equation model is applied (Sommerfeld et al.
1993). In this approach the fluid fluctuation at the new
particle position is correlated with that at the pervious
position through a Lagrangian and an Eulerian correlation
function. The latter is only considered in the case with
gravity in order to model the crossing trajectories effect.
Periodic boundary conditions are applied for the particles
according to the approach adopted in the LES. The time step
for solving the equations of motion was fixed with a value of
0.5 ms.

INTER-PARTICLE COLLISION MODEL

The developed stochastic inter-particle collision model
relies on the generation of fictitious collision partners and
the calculation of the collision probability according to
kinetic theory. The advantage of this model is that it does not
require information on the location of the surrounding
particles and hence it is also applicable if a sequential
tracking of the particles is adopted, as usually done when
applying the Euler/Lagrange approach to stationary flows.
During each time step of the trajectory calculation of the
considered particle a fictitious second particle is generated.
The size and velocity of this fictitious particle are randomly
sampled from local distribution functions. In generating the
fictitious particle velocity components the correlation with
the velocity of the considered particle due to turbulence has
to be respected. The degree to which the particle velocities
are correlated depends on their response to the turbulent
fluctuations. The velocities of small particles will be strongly
correlated while those of very large particles are completely
uncorrelated. The response of particles to turbulent
fluctuations is characterized in terms of the Stokes number,
i.e. the ratio of the particle response time to the Lagrangian
integral time scale (see Eq. 1). The particle response time is
determined from the calculations accounting for non-linear
drag and the Lagrangian integral time scale is obtained from
the turbulent dispersion model (Sommerfeld et al. 1993). In
the developed collision model, the correlation of the velocity
components of the fictitious particle uge; with those of the
real particle u,.,; is accounted for in the following way by
using the turbulent Stokes number:

uﬁct,i = R(Stt)ureal,i +o_p,i Vl—R(Stl )2 f (6)

Here o,; is the local rms value of the particle velocity
component i and & is a Gaussian random number with zero
mean and a rms value of one. Hence, the sampled velocity
components are composed of a correlated and a random part.



With increasing Stokes number the correlated term (first
term in Eq. (6)) decreases and the random term increases
accordingly. Comparing model calculations with large eddy
simulations (which will be introduced below) the following
dependence of the correlation function R(St;) on the Stokes
number was found.

R(St,)=exp(-0.55 5:°*) %)

The next step in the collision model is the determination
for the probability for the occurrence of a collision between
the considered and the fictitious particle within the time step.
The probability is obtained as the product of the time step
size At and the collision frequency given by kinetic theory:

Pmll =fL' At =% (Dpl +D[)2 )2 |12p1 _ﬁpzl NpZ At (8)

where, D;,; and Dy, are the particle diameters, Iﬁpl —il,,

is the instantaneous relative velocity between the considered
and the fictitious particle and N, is the number of particles
per unit volume in the respective control volume. In order to
decide whether a collision takes place, a random number RN
from a uniform distribution in the interval [0,1] is generated.
A collision is simulated when the random number becomes
smaller than the collision probability, i.e if:
RN < F)coll

It is more complicated to determine the position of the
fictitious particle relative to the considered particle. Since
both particles move, any point on the surface of the particles
is a possible point of contact. Moreover, the probability
density is not the same for every point on the surface and
strongly depends on the relative motion of the particles.
Therefore, it is very difficult to model the collision in the co-
ordinate system of the flow field in which both particles
move. When the problem is however transferred into a co-
ordinate system in which the fictitious particle is fixed, the
collision calculation becomes much simpler. In this situation,
the point of impact on the surface of the fictitious particle
can only be located on the hemisphere facing the considered
particle. Now a collision cylinder is defined as the domain
where the center of the fictitious particle must be located if a
collision takes place (Fig. 1). It is physically obvious that the
probability density of finding the center of the fictitious
particle at some point in the perpendicular cross-section of
the cylinder is uniform (note that this does not imply a
uniform probability density for the points of the particle
surface to be points of contact). By generating two uniform
random numbers XX and ZZ in the range [0, 1], the location
of the collision point in the longitudinal section of the
collision cylinder is defined by the lateral displacement, L,
and the angle ¢ (Fig. 1).

L =vXX*+27Z?

¢ = arcsin(L)

with: L<1 ©)

An additional random number, ¥, with uniform
distribution (0 < ¥ < 2 m) is necessary to determine the
angular position of the collision point.

Figure 1. Particle-particle collision configuration and
coordinate system

The relations for the calculation of the post-collision
velocities of the considered particle in the co-ordinate system
where the fictitious particle is stationary now reduce to the
momentum equations for an oblique central collision. Hence,
one obtains for the determination of the velocity components
the following equations.

I 1+e
A kil 1+ mp, [mp, (10)
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Here, e is the coefficient of restitution, and mp; and mp,
are the masses of the considered and the fictitious particle,
respectively. Finally, the velocities of the considered particle
are re-transformed in the original co-ordinate system.

An essential requirement for the collision model is
however, that for each control volume the particle size and
the velocity distribution functions have to be sampled and
stored. The local distribution functions of the particle phase
properties are updated after each Lagrangian calculation
through an iterative procedure until these properties
approach steady state values. Since in the first iteration no
particle phase properties are available yet, the particle
collision calculation begins with the second Lagrangian
calculation. When the effect of the particles on the fluid flow
is accounted for, this procedure is combined with the two-
way coupling iteration procedure (Kohnen et al. 1993).

HOMOGENEOUS ISOTROPIC TURBULENCE

In order to validate the developed stochastic Lagrangian
inter-particle collision model, data obtained by large eddy
simulations (LES) were used (Lavieville et al. 1995). The
first test case was a homogeneous isotropic turbulence field
(i.e. a cube with periodic boundary conditions). The
turbulence characteristics and the particle properties are
summarized in Table 1. The collision detection algorithm
adopted in the LES required to consider rather large particles
(i.e. D, = 656 pum). In order to have particle response times
which are in the order of the integral time scale of
turbulence, the density of the particles was selected
accordingly (Table 1). The resulting turbulent Stokes
numbers (Eq. 1) are between about 0.8 and 6.0. But the
model calculations were also performed for a wider range of
Stokes numbers. For this case no gravity was considered,
whereby the particle motion is solely controlled by
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turbulence and collisions. The collision is assumed to be

fully elastic (i.e. e = 1.0, 0 = 0.0).

good agreement if the degree of

correlation is modeled

properly by appropriate specification of the model constants

in the correlation function (Eq. 7).

Gas phase rms velocity 0.3 m/s

Kinematic viscosity 1.45 - 10° m%s
Lagrangian integral time scale | 23 ms

Eulerian integral time scale 26 ms

Long. Eulerian length scale 7.25 mm

Lateral Eulerian length scale 3.71 mm

Particle diameter 0.656 mm

Particle density 25, 50, 100, and 200 kg/m’
Turbulent Stokes number 0.79,1.5,2.9,and 5.7
Volume fraction 0.005 — 0.05

Table 1. Turbulence characteristics and particle phase
properties for the large eddy simulations

As expected, the energy of the particles’ fluctuating
motion decreases with increasing Stokes number, since the
particles become less responsive to the turbulent
fluctuations. Both the model calculations and the simulations
follow the same trend, indicating that the particle-turbulence
interaction is modeled properly (Fig. 2). The collisions
between the particles have no strong influence on the
particles fluctuating motion, i.e. the results for the different
volume fractions are only slightly different.
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Figure 2. Kinetic energy of the particle fluctuating motion as
a function of Stokes number (symbols of one kind indicate
the results for the different volume fractions (see Table 1))

An important feature of the stochastic collision model is
the consideration of the correlated motion of colliding
particles. This effect is pronounced when the particle
response time is in the order of the integral time scale of
turbulence or even lower. The relative velocity distribution
function (PDF) for particles with a Stokes number of 0.794,
shown in Fig. 3, reveals the importance of accounting for
this correlation. If the velocity of the fictitious particle is not
correlated with that of the considered particle a rather wide
velocity distribution with a mean value of 0.45 m/s is
obtained. The correlated model in contrary gives a more
narrow relative velocity distribution with a mean value
reduced to 0.32 m/s. The comparison of the model
calculations with the large eddy simulations shows a rather
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Figure 3. PDF of the relative velocity between colliding
particles, comparison of the stochastic model with large eddy
simulations (p, = 25 kg/m’, St, = 0.794, o = 0.0352)

The effect of Stokes number on the mean relative velocity
of colliding particles is illustrated in Fig. 4 for model
calculations with and without correlation. As a result of the
higher agitation of small particles by turbulence the
uncorrelated model considerably over-predict the mean
relative velocity. The correlated model predicts an increase
of the mean relative velocity with decreasing Stokes number
up to a Stokes number of about 0.4. With further reducing
particle size the velocity of colliding particles become more
and more correlated and hence a decrease in the mean
relative velocity is observed. For very small particles the
mean relative velocity approaches the value obtained by
Saffman and Turner (1956) for particles completely
following the turbulent fluctuations. By not accounting for
the velocity correlation for light particles, the mean relative
velocity and hence the collision frequency is completely
over-predicted. For heavy particles the same mean relative
velocity is obtained for both model calculations as one
would expect.
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Figure 4. Mean relative velocity of colliding particles,
comparison of uncorrelated and correlated model (o =
0.0176)



As a result of the reduction of the mean relative velocity
due to the correlation effect, also the average collision
frequency will be reduced. This effect may be illustrated by
comparing the simulated average collision frequency with
that resulting from the kinetic theory limit, which
corresponds to the average collision frequency obtained
without correlation. In Fig. 5 the ration of the calculated
collision frequency to that predicted by kinetic theory is
plotted versus Stokes number. For very large Stokes numbers
the frequency ratio approaches unity. With decreasing Stokes
number the frequency ratio is continuously reduced due to
the increasing degree of correlated motion of colliding
particles. The predicted increase of the frequency ratio with
Stokes number is in very good agreement with the LES data.
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Figure 5. Dependence of the ratio of simulated collision
frequency to the collision frequency obtained from the
kinetic theory limit on the particle Stokes number

BINARY MIXTURE OF PARTICLES

The second test case for validating the stochastic inter-
particle collision model was again an isotropic homogeneous
turbulence. However, now a binary mixture of particles
(fraction A and B) is considered. In the LES of Gourdel et al.
(1998) the same turbulence properties were used as in the
previous case (see Table 1). The particle size was 650 um
and two classes of particles (i.e. with different response time)
were generated by using different densities (i.e. pa = 117.5
kg/m® and pp = 235 kg/m®). The volume fraction of class A
particles was fixed with 1.3-10 and that of class B particles
was varied between 6.5:10%* and 4-10% Again completely
elastic collisions were considered (i.e. € = 1, p = 0). The first
series of calculations was performed for a granular medium
without  particle-fluid interaction under zero-gravity
conditions. This implies that the particle motion is solely
governed by inter-particle collisions and the initial
fluctuation of the particles upon injection into the
computational domain.

The particle fluctuating motion due collisions is
characterized by the particle phase fluctuating energy (Fig.
6). As expected the energy of fluctuation is higher for the
lighter particles (class A) than for the heavier particles (class
B). With increasing total number density (i.e. in this case the
number density of fraction A is constant and the number
density of fraction B is increasing) the energy of particle
fluctuation is increasing for both fractions due to the increase

in total collision frequency. The model calculations are in
good agreement with the LES-data. Only for large
concentrations of fraction B, a slight over-prediction of the
fluctuation of fraction A is observed.
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Figure 6. Kinetic energy of particle fluctuating motion
for fraction A and B, comparison of model calculations with
LES data
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Figure 7. Collision frequencies for fraction A and between
fraction A and B, comparison of model calculations with
LES data

The calculated collision frequencies between particles of
fraction A (fop) and between both fractions (fag) as a
function of the volume fraction of class B particles are
compared in Fig. 7 with the results of the LES. The collision
frequency fa, slightly increases with the volume fraction o,
since the fluctuating intensity of fraction A particles is
increasing (see Fig. 6). With increasing the fraction of B-
particles also the collision frequency fap increases linearly.
Both trends are very well captured by the model calculations
and the agreement with the LES is very good.

In the second case with particle-flow interaction and a
gravity of g, = 49.05 m/s?, a mean relative velocity between
the two particle classes is induced due to their different
terminal velocity. As a result of the collisions between the
two particle fractions a momentum transfer is caused,
whereby the mean velocity (i.e. in the direction of gravity) is
smaller than the terminal velocity for the light particles
(fraction A) and larger for the heavy particles (Fig. 8). At
low volume fractions of class B, the heavy particles are
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strongly dragged by the light ones and hence the heavy
particle mean velocity is about 19 % smaller than their
terminal velocity. With increasing volume fraction of class
B, the heavy particles drag the light particles and their mean
velocity increases, while the mean velocity of the heavy
particles also increases and approaches the expected terminal
velocity. These effects are well reproduced in the model
calculations and the agreement with the LES-results is
reasonably good.

Considering the collision frequencies for this case (Fig.
9), it is obvious that f5, is much smaller than for the case
without flow (Fig. 7), which is caused by the particle-
turbulence interaction. With increasing concentration of
fraction B the collision frequency of fraction A (faa)
increases at a higher rate compared to the result in Fig. 7 due
to a stronger fluctuating motion resulting from the
momentum transfer with the fraction B. The collision
frequencies between fraction A and B are about the same
than for the case without flow. This indicates that the
reduction of collision frequency due to particle-turbulence
interaction is balanced by the increase due to the mean
relative drift between both fractions. The agreement of the
model calculations with the LES-results is also for this case
quite good.
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Figure 8. Mean particle velocities for fraction A and B,
comparison of model calculations with LES data
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Figure 9. Collision frequencies for fraction A and between
fraction A and B, comparison of model calculations with
LES data
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CONCLUSIONS

It has been demonstrated that the developed stochastic
inter-particle collision model predicts the correct particle
phase statistics if the correlation of the velocities of colliding
particles is accounted for. For both test cases considered, the
agreement with LES-data is very good. For a further
validation of the model a homogeneous shear flow will be
considered.
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