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ABSTRACT

Non-linear eddy-viscosity models and second-moment
closure are examined, both theoretically and by comparison
with 2-d and 3-d test cases featuring separation from mildly
curved surfaces. It is found that, whereas non-linear stress-
strain relations improve the prediction of normal-stress
anisotropy, the mean flow dynamics are primarily
influenced by the shear stress and, in particular, by the use
of a strain-dependent linear coefficient. The advantages of
second-moment closure are most apparent in fully 3-d
flows, where several stress components are important.
Determination of the turbulent length scale remains a
crucial element in the performance of models in non-
equilibrium flows.

INTRODUCTION

Practical flows demand the application of turbulence
models which have, almost invariably, been calibrated by
reference to simple shear. This extrapolation can only be
successful if the models account for all essential physical
mechanisms that play a role in highly non-equilibrium
conditions.

The set of second-moment transport equations form a
sound modelling framework for flows involving complex
strain, mainly because the influential production terms do
not require approximation. However, their performance is
sensitive to the modelling of stress redistribution. Non-
linear eddy-viscosity models (NLEVMs) represent,
potentially, an alternative to second-moment closure.
However, since these models contain much less of the
physics that are explicitly accounted for in the second-
moment equations, NLEVMs require both very careful
calibration and evaluation over a broad range of non-

equilibrium conditions.

Among the many non-equilibrium flow phenomena
encountered in practice, separation from curved surfaces is
especially challenging. Specifically, the location of
separation is highly sensitive to the complex interplay
between the boundary layer approaching separation,
including the semi-viscous near-wall region, surface
curvature and the adverse pressure gradient. The important
role of the near-wall region makes it desirable to employ
models which have been designed and calibrated for use
right through the viscous sublayer.

This paper examines the performance of four differential
stress models (DSMs) and three NLEVMs in 2-d and 3-d
flows in which separation from flat or gently-curving
surfaces is provoked by an adverse pressure gradient.

TURBULENCE MODELS

Second-Order Closure

Second-moment closure refers to the modelling and
solution of differential transport equations of the form

p—gt—(u,-uj) =B +®; +%d,~j —pg;

where the advection and production (Pj;) terms are exact,
and the pressure-strain correlation (®;;), diffusion (d;j ) and
dissipation (gj;) terms require modelling. The models
considered here are those of Gibson and Launder (1978),
Speziale et al. (1991), Shima (1998) and Jakirlic and
Hanjalic (1995). The first applies to high-Re conditions
only and is used here as a datum. The novelty of the second
is a quadratic pressure-strain approximation for the slow
and rapid parts of the pressure-strain correlation,
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oM = —€[ca+q’ (a2 —%{az}l)] ’

®® =¢fcy s +cp(sa+as—2{as))
+cy3(wa—aw) + cyy{asjaj,
which, reportedly, obviates the need for explicit wall-
proximity corrections. Here, a; =uu;/ k—%&ij is the
anisotropy tensor, Wwhilst s =%(U,~J +U;)k/e and
;i =%(U,3 j—Uji)k/e are the non-dimensional mean

strain and vorticity tensors, respectively. For brevity, a
second-rank tensor is denoted by bold type and its trace by
{.}. The other models use wall corrections and simple
“return-to-isotropy”  (¢’=0) and “isotropisation-of-
production” (¢pp =¢p3 = %021, ¢4 =0) pressure-strain

approximations - except for Shima’s rapid term, which is
linear. The last two models are true low-Re closures, with
coefficients which are functions of the turbulence Reynolds
number R=k*ve and the anisotropy invariants a={a*} and
a={a’}, together with Lumley’s flatness parameter

A= 1—%(:12 —az), which takes the values 0 and 1 in 2-d

and isotropic turbulence, respectively. Jakirlic and
Hanjalic’s model explicitly employs an anisotropic
dissipation of the form

e=f 21+~ f)e",

where €' has the correct asymptotic behaviour and f;—0 as
solid boundaries are approached. An additional flatness
parameter is constructed from €. For other models, any
anisotropic dissipation is assumed to be absorbed within
the pressure-strain model. For the Jakirlic and Hanjalic
model we have examined the additional source term
proposed by Hanjalic et al. (1997) in the € equation:

3/2
V(2.5E)

g€
S; = max[(y? —1)72,01—k—A, y=

This term, which is determined by the gradient of the
dissipation length, is designed to prevent excessive growth
of the turbulent length scale in flows with large irrotational
strains (those which contribute to the production of
turbulence energy, k).

Non-Linear Eddy-Viscosity Models
NLEVMs consist of two elements: a non-dimensional

constitutive  relation between anisotropy a and
irrotational/rotational strains (S,®) and transport equations
for turbulence scalars (e.g. k and €) to determine k. The
Cayleigh-Hamilton theorem dictates that there are only 10
tensorially-independent, symmetric, traceless, polynomial
combinations of 8 and ®, so that, with a particular basis
(the choice of which will be discussed below), the general
non-linear stress-strain relationship may be written:
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+e (87 = L{8?}) + 3 (0 — 80) + g (07 — L{@? )
+es(@’s +s0” - {0?)s - 2{oso)) + c5(0s’ - s’0)
+c;[0°8? + 8707 - {0?)(s” - Hs* ) - 2 s’ )l]
+cg[s’ws - sws” - 1 {s?}(ws - sw)]
+oo[wse’ - 0’se - L {o®)(0s - sw)]

+c10(m820)2 - 0’s’w)
where successive lines contain tensor bases of increasing
degree in W and s, and the ¢; are functions of the
irreducible invariants {s?}, {®@}, {8’}, {s®’}, and {S’®’}.
In 2-d incompressible flow, one finds that
8% = (551 +si)b = 3™,
o’ =-opl, =L, ,

where l=diag(1,1,0), so that, with the (slightly complex)
bases chosen here, the cubic and higher-degree terms
vanish. A quadratic model, therefore, is sufficient to
compute a 2-d flow. Terms of higher degree only become
necessary in 3-d flows. An alternative view is to note that
the symmetric, traceless anisotropy tensor has only 3 and 5
independent components in 2- and 3-d flows, respectively.
Sufficient degrees of freedom (i.e. non-zero c; ) are then
met at quadratic and cubic levels in the two cases. Indeed,
if one adheres to the principle that pure rotation generates
no anisotropy, then ¢4=0, and a cubic model (ci,...,cs) has
precisely the correct number of degrees of freedom. A cubic
model, therefore, is deemed appropriate for general 3-d
flows. The coefficients of three stress-strain relationships
that we have investigated - Gatski and Speziale (1993),
Craft et al. (1996), Apsley and Leschziner (1998) - are
given in the Appendix. The first is quadratic and high-Re;
the last two are cubic and low-Re.

The linear term corresponds to the standard k-€ model,
with c¢=cy. For simple shear, the linear term makes no
contribution to the normal stresses, but the quadratic terms
give

an = %(Cz + 603 - C4)02,

ay = 35(c; —6¢3 - ¢4)0”,
where ©=(k/€)(dU/dy), and are responsible for normal-

stress anisotropy. The Craft et al. model includes a term

proportional to (s;;s; — ©;;®;;)$ , which is herein regarded
as part of the linear term. In curved shear flow,

sijsij —U)U(DI] = —2822(5)2 5

oOR R\e

where R is the radius of curvature. This component,
therefore, yields sensitivity to mean streamline curvature.

TEST CASE COMPARISONS
We report solutions for an asymmetric plane diffuser
(Obi et al., 1993), axisymmetric transonic bump (Bachalo



and Johnson, 1986) and a 3-d wing-body junction (Fleming
et al., 1993), all shown in Figure 1. Calculations were
performed with a general-purpose, multi-block, non-
orthogonal, finite-volume procedure, using collocated
variable storage and the SIMPLE pressure-correction
algorithm. All transport equations were discretised with a
second-order, upwind-biased advection scheme.

Asymmetric Plane Diffuser (Obi et al., 1993)

This nominally 2-d geometry has one plane and one
inclined wall and diffuses the flow from H to 4.7H over
distance 21H. The flow separates from the angled wall at
x/H=11, due to the adverse pressure gradient, and
reattaches at x/H=26. A mesh of 292x96 cells was used for
low-Re calculations. For high-Re models, cells within 5%
local channel height of the walls were amalgamated to form
the wall-law region. Fully-developed channel-flow
calculations at Re=21200 were used to prescribe inflow
profiles at x/H=-11.

Figures 2 and 3 show mean-velocity profiles in the
diffusing section for NLEVMs and DSMs, respectively.
With the exception of the Jakirlic and Hanjalic (1995)
DSM, all advanced closures returned clear improvements
over the baseline linear k- model, predicting separation
and cross-channel asymmetry. The length-scale correction
of Hanjalic er al. (1997) had no significant effect here.
Greater reversed-flow velocities with high-Re models
suggest that, despite their other defects (including lack of
smoothness near the wall, due to the size of the near-wall
cell), wall-function treatments often control near-wall
length scales better than current low-Re closures.
Differences between predictions with the Speziale et al.
(1991) and Gibson and Launder (1978) models primarily
arise from the different e-equation constant - C¢;=1.83 as
opposed to 1.92 - rather than the pressure-strain
approximations. Figure 4 shows shear-stress predictions.
The DSMs correctly predict enhanced levels in the upper
half of the channel, but, whereas experiment reveals steady
growth along the channel, computations exaggerate this
significantly in the first half of the diffuser.

Figure 5 distinguishes the effect of the non-linear terms
in the Craft et al. model. The Figure demonstrates that: (a)
the improved mean-flow profiles are primarily attributable
to a strain-dependent C, rather than a non-linear stress-
strain relationship; (b) addition of quadratic terms greatly
improves the prediction of anisotropy - particularly the
streamwise component - and promotes slightly earlier
separation, perhaps due to reduction in the wall-normal
stress (the quadratic terms have no direct effect on the
generation of turbulence energy in 2-d flows); (c) the
curvature-dependent term has negligible influence here.

xisymmetric Transonic Bum Bachalo and

Johnson, 1986)

The transonic flow over a circular-arc bump (chord c)
gives rise to separation just downstream of a shock at
x/c=0.66 for a free-stream Mach number of 0.875. Low-Re
calculations were performed with a mesh of 220x100

control volumes and wall-function calculations by
amalgamating the 21 cells nearest the surface. Plug flow
was assumed at x/c=-4.0, to give the correct upstream
boundary-layer height.

Figures 6 and 7 show the C, distribution over the bump
for NLEVMs and DSMs respectively. All the advanced
models predict earlier shocks and separation than the
standard k-€ model. However, the mean-velocity profiles in
Figure 8 show the advanced closures to predict too much
recirculation. All models tested yield insufficient rate of
recovery in the wake region.

Wing-Body Junction (Fleming et al., 1993)

This 3-d junction flow is formed by a symmetric aerofoil
(3:2 semi-elliptic nose and NACA 0020 tail) affixed
normally to a flat plate. The Reynolds number based on
aerofoil thickness 7' is 115000 and the chord:thickness ratio
¢/T is 4.25. The flow is dominated by the characteristic
“horseshoe” vortex. The flow was computed with a single-
block, low-Re mesh of 144x48x48 control volumes,
assuming symmetry in the wing centre-plane. For high-Re
models, cells close to the walls were amalgamated to form
a 144x36x36-control-volume mesh. Inflow profiles were
based on the experimental data at x/T=-18.

Figure 9 shows Cp distributions on the wing for
representative linear and non-linear EVMs and differential
stress closure. The pressure distribution is almost model-
independent and shows that, whereas the pressure near the
plane surface is well-predicted, in the more 2-d region the
wing pressure minimum is underestimated and displaced
forward with respect to experiment. The pressure
distribution is insensitive to the near-wall treatment.

Figure 10 shows the mean velocity in the upstream
vortex and Figure 11 the secondary-flow velocity in a
crosswind plane. Second-order closures predict stronger,
but less extensive, vortex structures than both linear and
non-linear eddy-viscosity models in this highly three-
dimensional flow.

CONCLUSIONS

Theoretical considerations suggest that a cubic stress-
strain relationship is required for first-order closures to
represent anisotropy in general 3-d flows. In practice,
however, the performance of such models is primarily
influenced by the variation in the linear term, for which C,
should decay at least as fast as the reciprocal of the non-
dimensional strain rate for large velocity gradients.

In the chosen test cases, second-moment closures
produced results comparable to NLEVMs for 2-d flows, but
were significantly better for 3-d flows, where the number of
dynamically-important stress components is greater. Results
showed variation attributable to length-scale modelling.
The difference between high-Re models, for example, could
be seen to depend on C¢, and, in the diffuser case, wall-
function calculations gave better results in adverse pressure
gradients than models which integrated through the viscous
sublayer.

247



ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support
provided by the UK Engineering and Physical Sciences
Research Council (EPSRC), British Aerospace plc, Rolls-
Royce plc and the UK Defence Evaluation and Research
Agency (DERA). Thanks are also due to Dr. A.Gould of
BAe (SRC) for many useful discussions.

APPENDIX: COEFFICIENTS IN NON-LINEAR
STRESS-STRAIN RELATIONSHIPS

Gatski and Speziale (1993) - as regularised by Speziale
and Xu (1996):

a2 +6n)+ 30 (al )

a+20)a+22 + 2 +6pm>H\ 2 )’
a+20)1+nh+ 30’

= 2 2 5932
A+255)(1+28 +B3,m°)

n= Lo /o5 §= (o /o) (wym;)"?,

oy = 0227, o, =00424, a3 =0.0397,

B] = 70, BZ = 6.3, B3 =4.0

a

€23

Craft, Launder and Suga (1996):

¢ = ¢y fyl1+10¢5 (5% -@%)] ,
(c2,¢3,c4)=(-04,04,-1.04) ¢, f, » cg = 8003fu

_031- exp(~0.36¢%75%)

# 14035532 ’
fiu =1-exp[~(R, /90)"/2 = (R, / 400)*],
5= @255 ®=Qoj0)"?, §=maxE,0)

Apsley and Leschziner (1998)
(aly[ 1+ GBI -y /52
VST A
K3 Y

* *
_ 6(ay; +ay)

’

a1*1 ‘a;2
€3 = ————==,
3 52
6v> 6By, (ap

(cs,c6)=(——=——=) =727 -
5076 52 52 s(l+%B2—yz)

5= @5 © = Qoo

1 2/

P +\/0*2 +25(fo = DE +32)

%2
fo =1+125max(0.09c ,1), B=0222, y=0.623
a1*2, arl, a;2 and o are functions of y, based on DNS

data for fully-developed channel flow. For large y',
@, a1, @y, 6 ) = (<03,10, 0.4, 333) .
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Figure 1. Geometry of test cases: (a) plane asymmetric
diffuser; (b) transonic bump; (c) wing-body junction.
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Figure 2. Diffuser: mean-velocity profiles with eddy-
viscosity closures; o experiment, ..... Launder and
Sharma k-g;, — - — -— Gatski and Speziale; ----- Apsley
and Leschziner; Craft et al.
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Figure 3. Diffuser: mean-velocity profiles with second-
order closures; o experiment, .... Launder and Sharma
kg — —--— Gibson and Launder; ----- Speziale et al.;
— — — — Shima; Jakirlic and Hanjalic.
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Figure 4. Diffuser: shear-stress
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Figure 5. Diffuser: effect of non-linear terms in the Craft
et al. NLEVM; o experiment;
quadratic terms omitted;

terms omitted.
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Figure 6. Transonic bump: surface pressure coefficient
with eddy-viscosity closures; o experiment, ..... Launder
and Sharma kg, — - — - — Gatski and Speziale; -----
Apsley and Leschziner; Craft et al.

;</c

Figure 7. Transonic bump: surface pressure coefficient
with differential stress closures; o experiment, .....
Launder and Sharma k-g; — - — - — Gibson and
Launder; ----- Speziale et al.; Jakirlic and Hanjalic.
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Figure 8. Transonic bump: mean-velocity profiles with
second-order closures; key as Figure 7.
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Figure 9. Surface-pressure coefficient on wing: o
experiment, ..... Launder and Sharma kg — - — - —
Apsley and Leschziner NLEVM,; Gibson and
Launder DSM.
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Figure 10. Streamwise mean-velocity profile in upstream
vortex; key as for Figure 9.
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Figure 11. Secondary velocity profile in crosswind plane;
key as for Figure 9.



