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ABSTRACT

The assumptions underlying the elliptic relaxation mo-
del for the pressure term in the Reynolds stress transport
equations are examined through the analysis of a channel
flow DNS database. The model is shown to be consistent
with the data, in particular with regard to the evaluation
of the length scale. Some features not accounted by the
model, such as the asymmetry in the inhomogeneous di-
rection of the two-point correlation function, are found to
be responsible for the observed spurious amplification of
the return to isotropy in the log layer. The expected re-
duction is obtained in the proposed new formulations of
the elliptic relaxation equation. The common belief that
this reduction is due to the wall echo effect is shown to be
erroneous.

INTRODUCTION

One of the most important and difficult tasks for tur-
bulence modelers is to model the pressure term in the
Reynolds stress transport equations, since it is the most
significant unclosed term. Following the pioneering work
of Chou (1945), this term is commonly split into rapid,
slow and surface parts. The latter is usually neglected
or represented by the so-called wall echo terms, while the
rapid part is modeled by introducing a fourth order ten-
sor, considering that the length scale of the variations of
the velocity gradient is large in comparison with that of
the two-point correlations.

This approach, which leads to the loss of the non-local
nature of the pressure term, was found by Bradshaw et al.
(1987) to be valid only for y* > 40 in a channel flow at
Re, = 180. Therefore, the influence of the wall on turbu-
lence cannot be reproduced without introducing correction
terms to this type of models. In order to avoid such ad hoc
modifications, Durbin (1991) proposed to model the two-
point correlations in the integral equation for the pressure
term by an exponential function. This novel method leads
to the so-called elliptic relazation equation, which repro-
duces the non-local effect and enables the derivation of

second moment closure models integrable down to solid
boundaries.

While the elliptic relaxation model has led to very en-
couraging results, some issues remain open and room for
improvement exists. The present work aims to assess the
validity of some model assumptions through the analysis
of a DNS database, which has never been done before.
Particular attention will be focused on the shape of the
correlation function as well as the length scale used in the
model. New formulations, which take into account the
variation of the length scale and the anisotropy of the cor-
relation function, will be proposed, and their behavior in
the log layer evaluated.

PRESENTATION OF THE PROBLEM
The elliptic relaxation approach

The pressure term entering the Reynolds stress trans-
port equations is

pdi; = — (WPyi + Wp;) )

The gradient of the pressure fluctuation, as well as the
pressure fluctuation itself, satisfy the Poisson equation

V2p,k = —p (2Ui, wjpi iy Ui =Ty Ug50) ik (2)

Eq. (2) is assumed to satisfy the boundary condition
Pykn = 0, where n denotes the unit vector normal to the
wall. This assumption is equivalent to requiring that the
“Stokes part” of the pressure gradient, namely the part
produced by the inhomogeneous boundary condition, be
negligible (Kim, 1989). The general solution of Eq. (2) is

Pk (X) = A Vpok (x")Ga(x,x") dv(x") 3)

where Gq is the Green function of the domain, i.e. the
solution of Eq. (2) in which the RHS is replaced by the
Dirac function §(x' — x). Eq. (3) does not contain any
surface term because the Green function satisfies the same
homogeneous Neumann boundary condition as for p,x.
The integral equation of the pressure term is a conse-
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quence of Eq. (3):

o (x) = / W6, %X)Ga (X )AV(K)  (4)

where Wij(x, x') = —u;(x)V2p,; (x') — ui(x)V2p,; (x').

Durbin (1991) proposed to model this two-point cor-
relation using the following definition of the correlation
function f(x,x'):

\Ilij(x,x') = ‘Ilgj(x',x')f(x,x') (5)
and to approximate the correlation function by

f(x,x") = exp (—r/L) (6)

where r = ||x’ — x||. Note that the correlation function
cannot depend on the component (¢,5) in order to pre-
serve the tensorial properties of the pressure term. In a
free space, the Green function is simply Ggrs(r) = —1/4nr.
Using Egs. (5) and (6) in Eq. (4) then yields a convolution
product between —¥;; and Egs(r) =exp(—r/L)/4nr,
which is the Green function associated with the Yukawa
operator —V2 + 1/L2. Hence, the modeled pressure term
satisfies the elliptic relaxation or Yukawa equation:

$is — L*V>¢ij = o1} (M)
In Eq. (7), the original RHS, —p~'L?¥;;(x, x), has been
replaced by a quasi-homogeneous model ¢f}, such as [P
or SSG model, noting that in homogeneous situations ¢;;

must relax to ¢f'] This equation can easily be generalized
in the case of a channel flow (Manceau et al., 1998, 1999).

Issues to examine

The elliptic relaxation approach is mainly based on the
modeling by an exponential function of the correlation
function f(x,x’') defined in Eq. (5). This approximation
was introduced intuitively by Durbin (1991) in order to
preserve the non-local effect on the pressure term. In the
present study, the two-point correlation ¥;;(x,x') will be
evaluated from the DNS database of a channel flow at
Rer = 590 (Moser et al., 1999), to assess the shape of the
correlation function and the validity of Durbin’s approxi-
mation. In addition, the length scale involved in Egs. (6)
and (7) will be evaluated, in order to validate the use of the
turbulent length scale k*/2 /¢ in the main part of the flow
and the Kolmogorov length scale in the near-wall region.

The ultimate objective of the present DNS analysis is
to find ways to improve the behavior of the model. As
pointed out by Wizman et al. (1996), the elliptic relax-
ation equation does not act in the right direction in the
log layer. Indeed, the function qu'j, like e, behaves in this
region as 1/y. If the length scale used in the model is
L = Cky, the solution of Eq. (7) is

¢i; = (1-2C°6*) 7'l (®)

which results in an amplification of the return to isotropy,
instead of the expected reduction.

Wizman et al. (1996) proposed to modify the elliptic re-
laxation equation, in order to correct this behavior. For
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instance, they introduced the so-called neutral formula-
tion, replacing in Eq. (7) the term L?>V?2¢;; by V? (L2¢¢j).
This formulation exhibits neither amplification nor reduc-
tion in the log layer. However, it suffers from a lack of
Jjustification.

The present work attempts to provide a more solid ba-
sis to develop other new formulations. The central idea is
that the correlation function cannot be approximated by
an isotropic exponential function. Indeed, there is no ba-
sis to assume that the two-point correlations between the
velocity and the Laplacian of the pressure gradient should
have this feature, given that the contours of the two-point
correlations between velocity components are packed be-
tween the point of zero separation and the wall (Sabot,
1976).

Furthermore, the erroneous model behavior in the log
layer leads to difficulties in predicting accurately both the
viscous sublayer and log layer, and hence compromises are
needed to calibrate the coefficients. This limits the influ-
ence of the elliptic relaxation to a region very close to the
wall. Some improvements can be expected by extending
this influence to a larger region.

RESULTS AND DISCUSSION
The wall echo effect

In a semi-infinite space, bounded by a plane, the
Green function is Ga(x,x') = —1/4nr — 1/47r*, where
r* = ||x"* —x]||, x'* being the image point of x’ in the
wall. It has been widely accepted that this image term,
representing the wall echo effect, is responsible for the re-
duction of the pressure term. This concept has led to the
inclusion of Gibson & Launder type wall echo terms.

However, since this term appears in the Green function
with the same sign as the principal term, it actually in-
creases the pressure fluctuation and hence the pressure
term. Therefore, the wall echo cannot be responsible for
the damping of the energy redistribution.

In a channel, the exact Green function is known only af-
ter taking Fourier transforms in homogeneous directions,
which is not relevant in the context of this work. Never-
theless, it can be approximated (Manceau et al., 1998,
1999) by H(x,xp) = —1/4mr_, — 1/4nr, — 1/47ry, with
rn = ||x, — x|, where x_, and x} are the image points
of x; with respect to each wall.

When Gq ~ H is used, Eq. (4) becomes

W, ) ’0 ’
pdij(x) = —-/Q ___,(;c"x ) (—-:1 + —rlo + —rll) dV(x')
(9)

Fig. 1 shows the three terms in the integrand of Eq. (9)
in a channel at y* =30. The image term arising from
the far wall located at y* = 1180 is negligible, but the
n = —1 term, which arises from the near wall at y* =0
and has the same sign as the principal term, makes a sig-
nificant, positive contribution to the integral (even though
the n = 0 term goes to infinity at zero separation, the vol-
ume integral of 1/r between r =0 and 1 is only 2).
Thus, the traditional way of modeling the damping of



the return to isotropy through additional wall echo terms
should be abandoned. It will be shown that this effect can
be taken into account by a proper reformulation of the
elliptic relaxation equation.
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Figure 1: Comparison of the terms in the integrand of Eq. (9)
(t=j=2)at y* =30: principal term (n = 0), ———
image term due to the wall at y'* =0 (n = —1), -—-— image

term due to the wall at y'* = 1180 (n = 1). The normaliza-
tion is such that the maximum of n = —1 term is 1.

Asymmetry in y-direction

The correlation function defined by Eq. (5) is modeled
by an isotropic exponential function in the elliptic relax-
ation method. Using DNS data, a correlation function
f(x,x") can be calculated for each component of ¢;; from

f(x1 X') = ‘I’Gﬁ(xv xl)/q,aﬂ(xlf xl) (10)

without summation over Greek indices. It is thus impos-
sible to derive a model of f which matches the DNS re-
sults for all the components. Hence, the following analysis
should be interpreted in a qualitative rather than quanti-
tative sense.
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Figure 2: Correlation function calculated from the DNS
data at different locations: y* =4; y* =14; yt =30;
yt =80; yt =150; yt =400; y* =590. f is evaluated
from Eq. (10) with (a) a =8 =1, (b) @ = 8 = 2. Separa-
tions in z- and z-directions are zero.

Fig. 2 shows the correlation functions corresponding to
é11 and ¢»2 at different locations. Several observations
can be made:

o The correlation length scale is larger at every location
for the 11 component than for the 22 component. Hence,
only a global accounting of the non-local effect is possi-
ble, which does not reproduce exactly the data.

¢ The correlation functions exhibit negative excursions.
This calls into question the use of an exponential func-
tion to model them. However, this model will prove to
be valid in the subsequent analysis.

o The correlation functions have clearly asymmetrical
shapes, particularly in the log layer.

The last feature is the most important one. Indeed, when
an isotropic correlation function is used, points between
the fixed position and the wall are over-weighted. In the
log layer, since the amplitude of ¥;; decreases rapidly with
distance to the wall, this results in the over-estimation of
the amplitude of the pressure term described earlier. This
appears to be the main improvable point of the model.
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Figure 3: Shape of the correlation function defined by
Eq. (10) with a = 8 =2, evaluated from the DNS, for
separation in the 3 principal directions at different y lo-

cations. (a) y* =14, (b) y* =30, (c) y* =80, (d)
y* =150, (e) y* =590. Separations: -—-— z-direction,
(Ay = Az =0); —— y-direction, (Az = Az =0); ———

z-direction, (Az = Ay = 0).

Anisotropy

Figs. 3a-e compare the correlation function correspond-
ing to ¢22 for separations in the 3 principal directions at
five y locations. It is observed that the distance of cor-
relation is larger in the streamwise direction than in the
other two directions. This feature is consistent with the
streamwise elongation of turbulent structures observed in
experiments. This anisotropy is most significant near the
wall (Fig. 3a), and becomes less pronounced away from it
(Figs. 3b-d), yet it still appears even in the center of the
channel (Fig. 3e).

The above observation calls into question the use of the
model given by (6), which does not distinguish among
streamwise, spanwise and wall-normal directions. Al-
though the anisotropy cannot be considered responsible
for the model defects noted previously, since the non-local
character has no effect in homogeneous directions, this
feature may become important in more complex flows.
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Length scales

The definition of the length scale used in the model (6)
is not obvious. Indeed, the standard definition of the cor-
relation function f to be used in Eq. (4) is

‘I’,‘j(x,xl) = ¥;5(x, x)f(x,x') (11)

where the one-point correlation is expressed in x, the point
where the velocities are evaluated. ¥;; can then be taken
outside the integral in Eq. (4). This formulation leads to
the definition of

L?nt. (x) =

/s; F(x,x)Ga(x,x")dV (x') (12)

which is an integral scale, since the ratio between the inte-
gral and the correlation at zero separation can be written
as

pis(x) = L (%) ¥ (x, ) (13)

However, this formulation leads to the loss of the non-
local effect. In order to preserve it, the correlation func-
tion must be defined by Eq. (5). With this definition, the
one-point correlation cannot be taken outside the integral.
The length scale L is then no longer an integral scale and
thus cannot be evaluated by Eq. (13).

Nevertheless, L is the integral from zero to infinity of
exp(—r/L). Therefore, one may attempt to define a length
scale in each direction by integrating f(x,x’) along a
line. But this method leads to a paradox in the homo-
geneous directions. For instance, the integral along the
z-direction of the correlation function defined by Eq. (10)
with a = 8 = 1 gives exactly zero. This is due to the fact
that f0°° f(x,r)dr is very different from the correct def-
inition of the integral scale, Eq. (12), which reduces to
Js° rf(x,r)dr for isotropic turbulence in free space. Note
also that, as a practical matter, f0°° rf(x, r)dr cannot be
used to evaluate L either because the r factor in the inte-
grand tends to amplify the numerical noise at large sepa-
ration where the true value of f is small.

In the following, a very simple definition of the length
scale will be used. It is noted that exp(—r/L) takes the
value 1/e for r = L. Hence, one can define L as the half-
width of the correlation function between the two points
at which f=1/e. Notwithstanding its simplicity, this
method enables the evaluation of the qualitative behav-
ior of L across the channel with directional dependence.

Fig. 4 shows a comparison of the different length scale
definitions. These results are rather surprising and very
encouraging. First, the correlation length scale L is very
close to the integral length scale Lin¢, except in the vicin-
ity of the wall. This shows that small separations con-
tribute most to the integral and that larger separations,
which show a more complicated behavior including nega-
tive excursions in Fig. 2, can then be neglected. This result
Jjustifies the use of a simple exponential function to model
the correlation function. Furthermore, Fig. 4 shows that
in the main part of the flow, the correlation length scale
L can, in a standard way, be evaluated by the turbulent
length scale Ly = Cpk%/2¢~1,
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Secondly, in the near-wall region (y* < 60), the corre-
lation length scale L approaches the value of 6, whereas
the integral scale Lin: decreases rapidly toward the wall.
As shown in Fig. 4, in this region, L behaves like the Kol-
mogorov length scale Ly = C,Crv®/4e1/4,

Finally, it can be seen that the point where L and L;n:
diverge is approximately where the turbulent length scale
L1 becomes smaller than the Kolmogorov length scale L.
This justifies the use of the formulation L = max(Lx, Lr)
in Durbin’s model.

0 100 200 300 400 500

y+

Figure 4: Comparison of the different length scales evaluated
from the DNS: O Length scale L defined as the half-width
of the correlation function f shown in Fig. 2b; o—o Inte-
gral scale L;y: given by Eq. (13) with i = j = 2; ——— Tur-
bulent length scale used in the model L = Cpk%/2c™!
(CL = 0.045); Kolmogorov length scale used near the
wall in the model Lx = C,Cv®/*e1/* (C, = 80).

NEW FORMULATIONS

Space transformation

As emphasized in the preceding sections, the elliptic re-
laxation equation does not behave correctly in the log
layer. New formulations of this equation need to be de-
rived, based on the results of the previous section.

The first problem to be noted is the rapid variation of
the length scale L across the channel. Indeed, the model is
derived from Eq. (4) using Egs. (5) and (6), which yields,
in a free space,

o000 = = [ () BB av ) 1

This equation can be inverted to give Eq. (7) only if it
is a convolution product, i.e., if L is a constant, or if L
can be considered locally as a constant over a distance
corresponding to the correlation length scale, which is L
itself. In the log layer, dL/dy is about x = 0.41, depending
on the coefficient used in the model. Therefore, L is not
locally a constant and Eq. (7) is not rigorously the inverse
of Eq. (14).

In order to take into account the variation of L, a coor-
dinate transformation x — a(x) can be introduced, such



that in the transformed space, the length scale is a con-
stant, and the boundaries of the domain are preserved:
a() =Q. In a channel, this transformation is simply

given by daz/La = dy/L(y), where L, is a constant.
Fig. 5 shows how it transforms the shape of the corre-
lation function. The correlation length scale, which cor-
responds to the half-width of the correlation function, is
then a constant.
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Figure 5: Effect of the space transformation on the corre-
lation function: (a) Original correlation function (same as
Fig. 2b); (b) Correlation function after transformation of y*-
axis. See Fig. 2 for additional caption.

If one defines functions &; = p,;oa™?!, wi=u;oa™?,

Ciy =dijoat, and gi = 8°¢i/Orkdrk, the same inver-
sion as that leading to Eq. (3) gives

£ (x) = / a(X)Ga(x, X aV(x')  (15)

where Ga(x, x') is the same Green function as in Eq. (3),
since the domain is preserved by the transformation a.
The same method leading to Eq. (14) can be used here to
show that, in a free space:

0is(0) = - [ 0, x) 22 L) avy (1)

where 0;;(x,x') = —w;(x)gi(x') — wi(x)g;(x’). The co-
ordinate tranformation o is chosen such that L, is a
constant, so that Eq. (16) is now a convolution product.
Therefore, (;; satisfies the Yukawa equation:

2

Gii(%) — L& %—f;é,—(;? =—p"'L30ii(x,x)  (17)

The equation satisfied by ¢;;, derived from Eq. (17),

involves the Jacobian matrix of the inverse transformation,

A = Va™!. This enables the introduction of a matrix of

length scales, by defining A;; = L;j /L. For instance, one
can define L;; = L u7u;/k, which gives

3 i 9Ly 9¢i; h
¢e) - Lkl[/ml a’l:ka.'l.‘m - Lml 3.1:m &: = ¢:J (18)
or simply L;; = d;;L, which gives
i — LV - (LV ;) = ¢l (19)

The first formulation distinguishes among the different
directions, as was found necessary in the preceding anal-
ysis, but introduces many new terms. The second one is
much simpler but the directional information is lost. Both
formulations take into account the gradient of the length
scale, which can be considered as a correction to the orig-
inal model. However, the log layer analysis now leads to:

65 = (1- BC*R) 4, (20)
with 8 = aius° /k? + Uztiz 2 /k? =~ 0.15 for the first formu-
lation and B = 1 for the second one. It can be noted that
these formulations still result in an amplification of the
return to isotropy, although it is less pronounced.

This problem can be traced to the shape of the correla-
tion function shown in Fig. 5b. It is seen that the space
transformation does not remove all the asymmetry in the
y-direction (note that, in this figure, the transformation of
the correlations is used, instead of the correlations of the
transformation). In the next section, a new correlation
function which takes into account this asymmetry will be
proposed.

New correlation function

In order to account for the asymmetry of the correlation
function, the gradient of the length scale can be introduced
by letting f(x,x’) = exp (—r/(L + (x' —x) - VL)). With
this correlation function, shown in Fig. 6b, the prediction
of the two-point correlation is improved, particularly be-
tween the fixed point x and the wall (cf. Fig. 6a), where
the original correlation function causes an over-estimation.
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Figure 6: A priori test of the two-point correlation

obtained at y* =80 using two different correlation
functions.  (a) O Ua(x',x)ons; o ¥ar(x,X')pws:
\Ilzz(x,xl) = \Ifzz(xl,xl)pns exp(-—r/L); ——
U (x,x') = Vo (x', x") pwvs exp (=1 /(L + (x’ —x) - VL)).
(b) —— exp(—r/L); ——— exp (—r/(L + (x' = x) - VL)).

Using a Taylor series expansion of the correlation func-
tion, it can be shown that the elliptic relaxation equation
becomes

(1416 (VL)?) ¢i; — L*V¢i; —8LVL - Vi; = ¢/
(21)
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The log layer analysis then yields
bi; = (1422 C*k*) 1ol
This new formulation exhibits now a reduction of the re-
distribution.
Additional correction terms can be derived, if second
derivatives of the length scale are introduced into the cor-

relation function. It can be shown that, at the first order,
two extra terms appear, and the equation becomes

(1 —4LVAL + 20 (VL)?) ¢ij—
L*V?¢:; —8LVL - Vi; = ¢l

which gives, in the log layer, ¢;; = (1 + 26 C’QKQ)"IQS?]-.
Thus, a simple modification of the model for the corre-
lation function overcomes the deficiencies of the original

model in the log layer, without introducing any “wall echo
terms”.

(22)

(23)

CONCLUSIONS

A DNS database for a channel flow at Rer = 590 has
been used to assess the validity of the elliptic relaxation
model and to understand how to improve its performance.
Several conclusions can be drawn:

¢ The main approximation, which consists of modeling the
correlation function by an exponential function, is con-
sistent with the data. In particular, the similarity of the
integral length scale L;n: and the correlation length scale
L shows that only the shape of the correlation function
around zero separation is important to be modeled.

¢ The length scale introduced by Durbin, which is the tur-
bulent length scale C1k*/2¢~! bounded near the wall by
the Kolmogorov length scale C,, C.v®/*e~1/*, reproduces
surprisingly well the evolution of the correlation length
scale across the channel.

o The shape of the correlation function depends on the
component of the two-point correlation tensor used to
evaluate it. Only a global accounting of the non-local
effect can then be expected.

o The image terms in the integral equation of the pres-
sure term actually lead to an amplification of the return
to isotropy. Hence, these terms cannot be considered
responsible for the reduction of the redistribution.

¢ The spurious amplification of the redistribution in the
log layer by the elliptic relaxation equation is due to
the fact that the model does not take into account the
strongly asymmetric shape of the correlation function.
Simple modifications to the correlation function model
lead to new formulations of the elliptic relaxation equa-
tion which do not present the same problem.

e The correlation function is anisotropic, elongated in the
streamwise direction. Even though this feature has no
effect in the case of a channel flow, it can affect more
complex flows. The present analysis shows that it is pos-
sible to introduce directional information into the model,
using a more complicated but tensorially correct formu-
lation of the elliptic relaxation equation.
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The physical insight gained through this study will en-
able further investigations to improve the elliptic relax-
ation method. The new formulations can be expected to
give improved solutions, particularly in complex flow con-
figurations. Their performance will be assessed through a
number of test cases in future investigations.
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