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ABSTRACT

The performance of Reynolds Stress Transport (RST) mod-
els in non-equilibrium flows is limited by the lack of infor-
mation about two dynamically important effects: the role of
energy-containing turbulence structure (dimensionality) and
the breaking of reflectional symmetry due to strong mean or
frame rotation. Both effects are fundamentally nonlocal in
nature and this explains why it has been difficult to include
them in one-point closures like RST models. Information
about the energy-containing structure is necessary if turbu-
lence models are to reflect differences in dynamic behavior
associated with structures of different dimensionality (nearly
isotropic turbulence vs. turbulence with strongly organized
two-dimensional structures). Information about the breaking
of reflectional symmetry is important whenever mean rotation
is dynamically important (flow through axisymmetric diffuser
or nozzle with swirl, flow through turbomachinery, etc.). Here
we present a new one-point model that incorporates the needed
structure information, and show a selection of results for ho-
mogeneous and inhomogeneous flows.

1. INTRODUCTION

Reynolds-averaged turbulence models are the primary tool
for the engineering analysis of complex turbulent flows, but
their performance in flows that must be computed in order
to advance technology is at best inconsistent. Dynamically
important features of the turbulence structure are inherently
nonlocal in nature, and thus difficult to emulate in one-point
closures, yet they cannot be completely ignored in models that
are designed for use in complex flows. This lack of crucial
information is now recognized as one of the primary challenges
facing turbulence modeling.

Consider for example the case of Reynolds Stress Trans-
port (RST) models where the Reynolds stresses Rij are used
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for closing the unknown terms in their own transport equa-
tions. R;; carries information about the componentality of
the turbulence (the relative strengths of different velocity com-
ponents), but not about its dimensionality (the relative unifor-
mity of the structure in different directions). Thus RST models
cannot possibly satisfy conditions associated with the dimen-
sionality of the turbulence, or reflect differences in dynamic
behavior associated with structures of different dimensional-
ity (nearly isotropic turbulence vs. turbulence with strongly
organized two-dimensional structures). Similarly, well known
limitations of RST models in predicting flows with strong rota-
tion can be, at least partly, traced to the lack of dimensionality
and other information.

The issues outlined above, and discussed in more detail
in Reynolds & Kassinos (1995) and Kassinos, Reynolds &
Rogers (1999), let us to introduce a set of one-point turbulence
structure tensors that contain key information missing from
standard one-point closures. Here we outline the construction
of a one-point model based on the transport of one of these
tensors, and show a selection of results for homogeneous and
inhomogeneous flows.

2. DEFINITIONS

We introduce the turbulent stream function \I!;, defined by

(1)

where u} and wj are the fluctuating velocity and vorticity
components. The Reynolds stress tensor is given by

=0 V! ~=-uw
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and the associated nondimensional and anisotropy tensors are
_ 2
rij = Rij/q

’Fij =Tij — %(S,J . (2b)
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Here ¢> = 2k = R;;. Using isotropic tensor identities
(Mahoney 1985), we can write (2a) as
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The constitutive equation (3) shows that one-point correla-
tions of stream-function gradients, like the Reynolds stresses,
are dominated by the energy-containing scales. These correla-
tions contain independent information that is important for the
proper characterization of non-equilibrium turbulence. For ex-
ample, the D;; tensor reveals the level of two-dimensionality
(2D) of the turbulence, and F,-j describes the large-scale struc-
ture of the vorticity field.

For homogeneous turbulence C'ij = Cji = 0, and the re-
maining tensors in (3) have equivalent representations in terms
of the velocity spectrum tensor F;; (k) and the vorticity spec-
trum tensor W;; (k). These are given below.
Structure dimensionality tensor:

kik;

Dij = | =5+ Eun(k) &’k

dij = Dij/¢*  dij = dij — 3035 4)

Structure circulicity tensor:

Fij = / Fij(k) d’k

fii = Fij/d®  fij = fij — 565 - (5)
Here F;; (k) is the circulicity spectrum tensor, whi whlch isrelated
to the vorticity spectrum tensor W;; (k) = Oiw* through the
relation ®
Wik
Fij(k) = z—z
We define the third rank tensor
Qije = —W; ¥, gijk = Qije/a®.  (6)
For homogeneous turbulence, Qij K is
Qijk = €ipgMjqpr ()
where M jpq is
kyk
Mijpg = —',;Tq'Eij (k) d°k. (8)

The definition of the third-rank fully symmetric stropholysis
tensor is given by

z]k - % (Q'L]k +Q]kz + ka] +sz1 + szk + ijz)
9)

For homogeneous turbulence, Q;x and Q7 are bi-trace free

Qiik = Qiki =Qrii =0 Q= (10)
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A decomposition based on group theory shows that Q;;% and

3jk (here we use TGk = /q?) are related to each other

1, Jk
and lower-rank tensors,

szk =q [ €ijk

+ §(Eikm7'mj + 6jimdmk + 6chmfmi) + quk]’
(11)

and

Tij = €impQdmjp dij = €impQdpmj fz'j = €impYjpm -

3. MODEL FORMULATION FOR HOMOGENEOUS
TURBULENCE

The one-point structure-based model carries the transport
equation for Q and a model transport equation for the dissipa-
tion rate €. The formulation of the model is based on simplified
nonlocal theory making use of structure modeling ideas. In
Section 3.1 we outline this nonlocal theory and in Section 3.2
we show how it leads to the one-point model.

3.1 IPRM formulation

Kassinos & Reynolds (1994,1996) formulated a simplified
nonlocal theory (Particle Representation Model or PRM) for
the RDT of homogeneous turbulence. The original idea was to
represent the turbulence by an ensemble of fictitious particles.
A number of key properties and their evolution equations are
assigned to each particle. Ensemble averaging produces a
representation of the one-point statistics of the turbulent field,
which is exact for the case of RDT of homogeneous turbulence.
In essence, this approach represents the simplest theory beyond
one-point methods that provides closure for the RDT equations
without modeling.

The Interacting Particle Representation Model (IPRM) is
a recent extension of the PRM formulation that includes the
effects of nonlinear eddy-eddy interactions, important when
the mean deformations are slow. Unlike standard models,
which use return-to-isotropy terms, the IPRM incorporates
nonlinear effects through the use of effective gradients. The
effective gradients idea postulates that the background non-
linear particle-particle interactions provide a gradient acting
on each particle in addition to the actual mean velocity gradi-
ent. An advantage of this formulation is the preservation of
the RDT structure of the governing equations even for slow
deformations of homogeneous turbulence. A detailed account
of these ideas is given in Kassinos & Reynolds (1996, 1997)
and will not be repeated here. To a large extent, the one-point
(Q-model is based on the IPRM formulation.

The governing equations for the conditional (cluster averaged)
IPRM formulation are (see Kassinos & Reynolds 1996)

i = —GEng + GR.ngn,n; (13)
R, = -G Ry; — GU Ry

+ (Gl + Glunl (Rimmin + Rimmns) - (14)
|n |n
- [201Rij - 022Rkk(6ij —ning)].
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Here n;(t) is the unit gradient vector and R,;; is the con-
ditional Reynolds stress tensor corresponding to a cluster of
particles with a common n;(t). The effective gradients are

cn cv
G:; =Gy + —Fn'kdkj ij = Gij + T—*Tikdkj R
(15)
where G is the mean velocity gradient. The constants cv
and C™ are taken to be C" = 2.2C" = 2.2. The different
values for these two constants account for the different rates
of return to isotropy of D;; and R;;.

The turbulent time scale 7* is chosen so as to produce the
proper dissipation rate. The rate of dissipation of the turbulent
kinetic energy k = %q2 produced by the IPRM equation (14)

18
v

C
€PRM — qz‘T_*Tikdkmrmi . (16)
We choose the time scale 7* so that e®M = ¢. This requires
¢
™ = (?)CUT‘ikdkami . (17)
To complete the IPRM we use the standard model equation

for the dissipation rate (€) with a rotational modification to
account for the suppression of € due to mean rotation,

¢ = —Co(€2/q%) — CsSpgTpe€ — Ca VO Qmdnm €.

(18)
Here §2; is the mean vorticity vector, and the constants are
Co =3.6 Cs =3.0 and CQ =0.01.
(19)

The last term in (14) accounts for rotational randomization due
to eddy-eddy interactions. We require that the rotational ran-
domization model leaves the conditional energy unmodified.
This requires that C; = C2, and hence using dimensional
considerations we take

¢ = =220 fnn,  (20)

T*
where * = /Q 0y and QF = €;pgT gk kp-

3.2 The stropholysis equation

We consider general deformations of homogeneous turbu-
lence. The most convenient method for deriving the Q equa-
tion is to use the conditional (cluster averaged) IPRM formula-
tion to obtain the evolution equation for ML, and then contract
the M equation with the alternating tensor €; to extract the
Q equation. The PRM representation for Q and M is

Qije = —(Vvjsing)  Mijpg = (Vvivjnpng)

(21)

where $; = €1, Vi, / V is the unit stream function vector
(see Kassinos & Reynolds 1997). Hence using (13) and (14)
and the definitions (7) and (21), one obtains

dQsjx
'd_::J = =G} Qimk — G Qijm — Gom€its Mjmek

e G?nteitijsmk + [Ggq + nyq]Qiqwjk

8.5
+ ZGgrQijqu - 7__* Q frs[Qijkrs + jSkrs] .
(22)
Using the PRM representation, Qijqu = (Vzvjsmknan).

3.3 Closure of the stropholysis equation

Closure of (22) requires a model for the tensor Qijkpq in
terms of Qijk- Once such a model has been specified, it
effectively provides a model for M, ijpq in terms of Qij £k since
M can be obtained from Q;;xpq by a contraction with €;;4.
For small anisotropies, one can write an exact representation
of Qijkpq in terms of Qz‘jk that is linear in Qijk- Other
tensors, like R;j, D;j and Fj;, can be expressed in terms
of Q,'jk [see (12)] and need not be included explicitly in the
model. Definitions (contractions and continuity) determine all
the numerical coefficients in the linear model. Thus the linear
model contains no adjustable parameters.

In the presence of mean rotation, rotational randomization
is an important dynamical effect that must be accounted for in
the model. Rotational randomization, a strictly nonlocal effect
that is lost in the averaging procedure generating the one-point
statistics, is caused by the differential action of mean rotation
on particle velocity vectors (Fourier modes) according to the
alignment of the corresponding gradient (wavenumber) vec-
tors with the axis of mean rotation. The main impact of
Fourier randomization on one-point statistics is the damping
of rotation-induced adjustments; here this effect is added ex-
plicitly through the simple model,

DQijr _ rf
Dy — T Y1(Qijk — Qik)
-2 eijm(-lee: - Dmk) — 73 €ikm (ij - ij) .

(23)

The first term accounts for the rotational randomization effects
in rotation dominated flows while the remaining two terms ac-
count for the modification of these effects due to the combined
action of mean strain and rotation. Q"f is the limiting state
of Q under rapid rotation. Here y;, y2 and <y3 are scalar
functions of the invariants of the mean strain and rotation and
are determined from simple test cases. A detailed discussion
of these models will appear separately.

The new one-point model produces excellent results for
general irrotational deformations of homogeneous turbulence.
A particularly interesting example is shown in Figure 1 where
we consider the case of irrotational axisymmetric expansion
(axisymmetric impingement). The mean velocity gradient

tensor in this case is
S == \/SijS,-j/2,

-1
2 0
(24)

Sij = =8
V3 \ o

o= O
v O O
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and the total strain

t
C:/ﬁSW&’ (25)
0

is used as the horizontal axis in Figure 1. As was discussed in
Kassinos & Reynolds (1996, 1997), the axisymmetric expan-
sion flows exhibit a paradoxical behavior, where a slower mean
deformation rate produces a stress anisotropy that exceeds the
one produced under RDT for the same total mean strain. This
effect is triggered by the different rates of return to isotropy
in the ¥ and d equations, but it is dynamically controlled by
the rapid terms. The net effect is a growth of T in expense of
d, which is strongly suppressed. The one-point model (see
Figure 1) is able to capture these effects well and also predicts
the correct decay rates for the normalized turbulent kinetic
energy k /k, and dissipation rate €/€,. The predictions of the
one-point )-model are comparable to those of the nonlocal
IPRM.

The predictions of the one-point ()-model for the case of
homogeneous shear (where the mean gradientis G12 = S)are
shown in Figure 2. Comparison is made to the DNS results
of Rogers & Moin (1987). Note that the model produces
satisfactory predictions for the components of 73; = R;;/ 7,
dij = D;j/q? and fi; = F;;j/q*. A fully-developed stage
was reached in the simulations for St > 10, and in this range
both the ()-model and the IPRM predict the correct level for
the dimensionless ratio of production over dissipation, P/e.
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FIGURE 1. Comparison of the one-point J-model pre-

dictions (dashed lines) with IPRM results (solid lines) and
the 1985 DNS of Lee & Reynolds (symbols) for the axisym-
metric expansion case EXO (S qg /€, = 0.82). (a)-(c) evo-
lution of the Reynolds stress, dimensionality, and circulicity
anisotropies; 11 component (e ), 22 and 33 components (V).
(d) evolution of the normalized turbulent Kinetic energy (e )
and dissipation rate (V).
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FIGURE 2.

Comparison of (-model predictions (lines)
and the 1986 DNS of Rogers & Moin (symbols). (a)-(c) evo-
lution of the Reynolds stress, dimensionality, and circulicity
components in homogeneous shear with S qg /€, = 2.36: 11
component, ( , ©0); 22 component, (----, V); 33
component, (—-— [J); 12 component, (---- , ¢). (d)
evolution of production over dissipation rate (P/ €): model,
(===-); IPRM, ( ); DNS (H).

A challenge for one-point models is provided by the elliptic
streamlines flows (see Figure 3),

0 0 —y—e
Gij = 0 0 0 0< |e| < |’)’|
vy—e 0 0
(26)

which combine the effects of mean rotation and plane strain
and emulate conditions encountered in turbomachinery. (Note
that the case e = 0 corresponds to pure rotation while the case
|e| = |7y| corresponds to homogeneous shear).

Direct numerical simulations (Blaisdell & Shariff 1996) show
exponential growth of the turbulent kinetic energy in elliptic
streamline flows, which analysis shows is associated with in-
stabilities in narrow wavenumber bands in wavenumber space.
Standard k-e models, as well as most RST models, erroneously
predict decay of the turbulence. As shown in Figure 3, the
one-point ()-model is able to capture the main features of the
oscillations observed in the components of the Reynolds stress
anisotropy 7;;. Furthermore, the model is able to capture an
exponential growth of the turbulent kinetic energy. Note how-
ever that the initial growth rate predicted by both the nonlocal
IPRM and the ()-model falls short of the rate predicted by
the DNS. At longer times, the growth rates predicted by both
models compare more favorably to the growth observed in the
DNS.
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FIGURE 3. Comparison of model predictions (lines) for the
evolution of the Reynolds anisotropy in elliptic streamline flow
(E=2.0) with the 1996 DNS of Blaisdell (symbols). (a) one-
point Q-model vs DNS, (b) IPRM vs DNS: 11 component,
( , ©); 22 component, (~—==, V); 33 component,
(----, 0); 13 component, (—-—, #). Growth of the
normalized turbulent Kinetic energy: (c) one-point Q-model
(line) vs DNS (symbols), (d) IPRM (line) vs DNS (symbols).

4. INHOMOGENEOUS TURBULENCE

The (-model has been implemented in a 1D code and is
being tested for fully-developed channel flow with and without
system rotation. Inhomogeneous effects are incorporated in
the Q3;% and € equations through the addition of standard
gradient diffusion models, accounting for turbulent transport,
as outlined below

DQijr _ K Cy OQijk

e T + Ba, ([1/6,3 + o R,s7] oz, )(27)
De 0 C, Oe
BZ =...+ 5‘{1:_7‘([ 51'3 + O__GRTST]B_:I:S) . (28)

The turbulent kinetic energy is obtained fromk = € Q; ik /2.

Wall proximity effects and boundary conditions are treated
through an elliptic relaxation scheme based on the ideas of
Durbin (1993). Terms in the transport equation for Qij & that
are assumed to represent nonlocal effects are lumped together
into a term g;jxm which is then replaced by a new tensor,
k fijk, obtained through an elliptic relaxation scheme

L*V2 fijk — ik = —pijn/k. (29)
Here L is a characteristic length scale for the elliptic relax-
ation. The elliptic relaxation scheme allows the imposition
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of boundary conditions that produce the correct near-wall be-
havior for various components of Q,-jk‘ Away from the wall
(29) allows one to recover the homogeneous model. This is
in analogy to the elliptic relaxation scheme applied to RST
models by Durbin.

4.1 Representative results

Preliminary results obtained with the ()-model for fully
developed channel flow are encouraging. The model was
implemented in a 1D-code using elliptic relaxation, as outlined
above, and with no wall-function treatment. A comparison of
the (Q-model predictions with DNS data (Mansour 1998) for
fully developed channel flow at Re; = 395 is shown in
Figure 4.
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FIGURE 4. Comparison of model predictions with DNS

(Mansour, 1998) for fully developed channel flow at Re, =
395. (a) components of the Reynolds stress tensor, (b) com-
ponents of the Reynolds stress tensor normalized by its trace:
model, ( ); DNS (==--). (c) mean velocity profile,
(d) dissipation rate profile: model, ( ); DNS, (O).

The Reynolds stress components (nondimensionalized with
the wall shear velocity ., ) are shown in Figure 4a. The agree-
ment between the model predictions (dashed lines) and the
DNS (solid lines) is satisfactory. The model slightly over-
predicts the peak in the streamwise component R'ﬁ that oc-
curs at about y* ~ 15. The components of the normalized
Reynolds stress tensor 7;; = R;j/ q? are shown in Figure 4b.
The agreement between the model predictions and the DNS
results is again reasonable. The agreement in the case of the
shear stress 712 is noteworthy. The mean velocity profile is
shown Figure 4c. The model prediction is in good agreement
with the DNS profile, the most notable difference being in
the value of the mean velocity in the log region. Finally, the
model profile of the dissipation rate € is shown in Figure 4d.
The model is again in good agreement with the DNS, but has a
larger wiggle near the wall than the data show. This difference



depends on the model transport equation for €, and we are
currently exploring alternative formulations that aim at taking
full advantage of the structure information carried in the new
model.

The Q-model has also been tested for fully-developed Poiseuille
flow with system rotation. Here we consider rotation about the
spanwise axis and compare results with the LES of Kim (1983)
for the case Re,; = U,h/v = 640 and Ro = 2hQ/Us =
0.068. The mean friction velocity %, is computed using the
wall shear stress averaged on the two walls, h represents the
channel half-width, Uy is the bulk mean velocity across the
channel, and €? is the frame rotation rate.

A comparison of the model predictions for the turbulent
intensities with the corresponding LES results is shown in
Figure 5. The fully-developed case with no system rotation is
also included [Fig. 5(a)] as a reference case. The agreement
between the model predictions and the LES results for this
reference case is acceptable. In the rotating case, the model is
able to capture the characteristic asymmetry in the turbulent
intensity profiles induced by the system rotation and overall
agreement with the LES predictions is acceptable. The model
correctly predicts that the wall normal intensity is significantly
higher on the unstable (pressure) side than on the (stable)
suction side of the channel. Near the channel centerline the
model is able to capture the reversal of the stress anisotropy
(u becoming higher than v) due to mean rotation.

3 T 3
(a) no rotation

(b) rotation
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FIGURE 5. Fully-developed Poiseuille flow at Re, =
640 with (a) no rotation (Ro = 0) and (b) with spanwise
rotation (Ro = 0.068). Comparison of model predictions
(lines) for the streamwise (ut) and wall-normal () turbu-
lence intensities with results from the LES (symbols) of Kim
(1983).

5. CONCLUSIONS

The turbulence structure affects the dynamics in nonequilib-
rium turbulence and its effects must be emulated by engineer-
ing models that are designed for use in complex flow regimes.
This poses a challenge to traditional turbulence models which
completely neglect turbulence structure. Here we outlined the
construction of a new type of model that captures structure
information missing from traditional one-point models. The
model has been validated successfully for a wide range of de-
formations of homogeneous turbulence. Results obtained for
simple wall-bounded flows are encouraging. We are currently
evaluating the model in more complex flows.
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