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ABSTRACT

An isotropic prestress theory for the Reynolds stress,
developed recently by Parks et al. (1998), is extended to
include an anisotropic component of the turbulent prestress
correlation induced by pressure fluctuations and
fluctuations in the instantaneous Reynolds stress. A
turbulent Deborah number, De, = Ay, controls the long

time response of the Reynolds stress subjected to a mean
velocity gradient. A preclosure relaxation group,
Np=rt,7, controls the short time response of the
Reynolds stress. For simple shear flows, the
phenomenological theory predicts the existence of nonzero
primary and secondary normal stress differences.

INTRODUCTION
Velocity fluctuations of a constant density, Newtonian
fluid relative to an inertial frame of reference are governed
by the following vector-valued equation (Monin and
Yaglom, 1965)
-<L>(u)=F M

where F'=u' - V<u>+f' and
’ P' o -
f'=V:|—I+u'u'-<u'u’> )
p=

The linear operator <L,>(-) defined by

<Lv>(u')s—§—t+<u>-V—vV2 3)

accounts for transport of momentum fluctuations by mean
convection and viscous stresses.

A statistically stationary representation for u’(x, t) can be
written in terms of a Green’s function associated with the
linear operator <L,>(-):

227

w(x,t) = - J' dt J’ aV <G >xtl KHFRD) @)

In a frame of reference moving with the local mean
velocity, the Green’s function is spatially peaked for

(t- f)v/”x—f("2 <<1. For large differences in time, the

Green’s function relaxes to zero over the entire spatial
domain (Morse and Feshbach, 1953); and, for an

unbounded domain, <G, >(x, t'i, 1)  satisfies the

following conservation property

%, 1) =1 )

jd\7<Gv>(x,t
\%

A formal representation of the kinematic Reynolds stress
<u'u"> follows by multiplying Eq. (4) by u’ and averaging
the result:

<u'u’>(x,t)=
t
- j dt j AV <G >(xt] %, 1) <w'(xHF &> (6)

- v

The the
<u'(x,t)F' (X,1)> relax to zero for large values of either

components  of space-time  correlation

(t- f)/ Ty oOr ||x - f(”/ £, , where 1y and /y represent
characteristic temporal and spatial scales associated with
the statistical space-time structure of the turbulence.

A spatial smoothing approximation that exploits the finite
memory of the underlying turbulent structure and the
relatively slow relaxation of the Green’s function from its
initial spatial delta distribution can be used to simplify the
non-local representation of <u'u’> given by Eq. (6). Using
this strategy, Parks et al. (1998) developed the following
algebraic preclosure for the Reynolds stress:



<wu>=A" [ <f'f'>]-A )
where the dyadic-valued operator A is defined by

Al =1+t V<u> ®)

The phenomenological time scale T, in Eq. (8) depends on
the underlying temporal coupling between the space-time
structure of the turbulence and the Green’s function:

T, = ‘j diM(x,|t— E|)j dv <G, >(x,t|ﬁ,%) )
—00 \"%

Because the spatial integral of the Green’s function is
constant for an unbounded domain, the statistically

stationary autocorrelation function M(x, |t— fl) accounts for

the temporal structure of the turbulence on t,. The
foregoing spatial smoothing ansatz yields a preclosure
theory that explicitly suppresses the spatial structure of the
turbulence.

Eq. (7) relates the Reynolds stress to three distinct
statistical properties of the turbulence: (1) the spatial
gradient of the mean field; (2) the relaxation time t,; and,

(3) the unclosed statistical correlation 2 <f'f'>. As
implied by Eq. (2), the prestress correlation t <f'f’>

accounts for fluctuations in the instantaneous Reynolds
stress and the pressure field. For homogeneous turbulent
flows, the operator A reduces to the unit dyadic and the
prestress correlation equals the Reynolds stress. Like the
Reynolds stress, the prestress is a non-negative operator
and, thereby, has three non-negative eigenvalues. Thus, it
follows directly from Eq. (7) that realizability of the
Reynolds stress (see, esp., Schumann, 1977) follows
directly from the realizability of the turbulent prestress

©<ff>.
The prestress correlation can be written as the sum of an
isotropic and an anisotropic operator:

(10)

2 <f'f'> =Zal+H

The anisotropic component is symmetric and traceless,
HA=H" and tr(H)=0. The analog of Eq. (10) for the
Reynolds stress is

<u'u’>=

w0

kI+b (11)

where b=b' and tr(b) = 0. In Eq. (11, the turbulent
kinetic energy k is defined by

(12)

1
k=—tr(<u'u’'>
> ( )

In Eq. (10), the isotropic prestress coefficient a. is given by
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(13)

o= %tr( 2 <f'f>)

Parks et al. (1998) completed the closure of Eq. (7) for
homogeneously sheared turbulent flows (also see Parks,

1997) by assuming an isotropic prestress. Thus, with
g = 2 , Eq. (7) becomes
<u'u>"S = %aé" ‘A (14)

Here the IPS-theory is extended phenomenologically to
include an anisotropic component of the prestress that
accounts for relaxation phenomenon (ie., return-to-
isotropy) as well as first- and second-normal Reynolds
stress differences for simple shear.

CLOSURE MODEL
Previous closure models for turbulence have focused
directly on the anisotropic component of the Reynolds

stress E (Monin and Yaglom, 1965; Speziale, 1991). The

widely used, frame-indifferent Boussinesq approximation
exemplifies these earlier approaches:

E=—2vc<§>

15)

In Eq. (15), v, is a scalar-valued eddy viscosity coefficient
that depends on the local statistical state of turbulence and

<S> is the mean strain rate. For large turbulent Reynolds
numbers (i.e., k> >> ve), the k-g theory assumes that
v, =C,k’/e where k and & represent, respectively, the
kinetic energy (see Eq. (12)) and the dissipation associated
with velocity fluctuations:
g=v<(Vu):(Vu)" > (16)
The dimensionless coefficient C, is constant for large
turbulent Reynolds numbers. Transport equations for k and

¢ are used to compute local turbulent time and length scales
within the flow domain (Launder et al,1975; Hanjalic,

1994):
D .
<—>(K)=—<uu'>:V<u>-¢
Dt
+V-[(VI+C, 1, < u'u’>)-Vk] 17)
<—D->(e)=—CP <u'u >:V<u>—CDi
Dt » Tp
+V-[(vI+C, T, <u'u’>)- Vg] (18)

The operator <D/Dt> is the substantial derivative relative to
the mean velocity. For large turbulent Reynolds numbers,
T, = Tp = k/e. The relaxation time 7, , defined by Eq. (9),
also scales with the turbulent turnover time, i.e., T, =
Crk/e.The dimensionless model parameters C, , C. , Cp ,



Cp , and Cy are independent of the local statistical state of
the turbulence. .

For v, > 0, Eq. (15) implies that the kinetic energy is
irreversibly transferred from the mean field to the
fluctuating field inasmuch as

—<u'u>: V<u>=2v,<8>:<8> >0

(19)

for all turbulent flows. Eq. (19) may partly justify the use
of Eq. (15) as a model for the anisotropic stress.
Unfortunately, however, Eq. (15) also predicts an
equipartition of kinetic energy among the components of
the fluctuating velocity in simple mean shear as well as a
zero third invariant of the anisotropic stress (i.e., III =
tr(b-b-b) =0). These unphysical results clearly misrepresent
the underlying mechanism associated with the flux of
momentum due to velocity fluctuations.

Parks et al. (1998) and Weispfennig et al. (1999) used Eq.

(7) and an isotropic prestress (i.e., E=2) as an

approximate model for the Reynolds stress. Although the
isotropic prestress (ISP) theory predicts a positive first
normal stress difference and a shear thinning eddy viscosity
coefficient for simple mean shear, it erroneously predicts
that the second normal stress difference is zero for simple
shear flows.

Here, a nontrivial frame-indifferent relaxation model for
the anisotropic prestress will be used to complete the
closure of Eq. (7):

-+ (M - o)1 =B <S > (20)
For  large turbulent Reynolds numbers, the
phenomenological parameters A and [ are assumed to scale
with k and &. Thus, A = C)k/e and 3 = 2kCgk/e. C, and Cy
are dimensionless constants independent of the local
statistical state of the turbulence. In the above equation,

M is a frame indifferent time derivation defined by

L/[(g)s<DRt>(£)—<!>T :

[|==

_g.<ﬂ>

+Cyl<S>-H+H-<S>] 1)

<S> and <W > represent, respectively, the mean strain

rate dyadic and the mean vorticity dyadic. With Cp, = 0,
Eq. (21) reduces to the corotational Jaumann derivative; for
Cy=+1 and Cy,= -1, Eq. (21) yields the upper and lower
convected derivatives of Oldroyd, respectively (Bird et al.
1977, Denn, 1990; Joseph, 1990; Speziale, 1991). The

operator _1\_’[_ () is an objective property of the mean field
for —co < Cy, < +o0. Physically, the Jaumann derivative of
ﬁ represents the temporal changes in the anisotropic

prestress relative to a frame of reference moving with the
local mean velocity and rotating with an angular velocity
equal to the mean vorticity. Note that Eqs. (20) and (21)
preserve the symmetry and contraction properties of the
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anisotropic prestress, H = ﬂ T and tr( E) =0. As shown
momentarily, the foregoing APS-theory can account for the
long-time relaxation response of the Reynolds stress to a
sudden removal of the mean field gradient (i.e., return-to-
isotropy). The theory also predicts the existence of nonzero
second normal stress differences in simple mean shear
flows.

ANISOTROPIC DECAY

For homogeneous turbulence, ﬁ = and o = k.

(k=i

Therefore, with §= 2kb , Eq. (20) can be written as

kd a-co,

——(b)=—— 22
€ dt (=) c, = 22)
and Eq. (17) becomes
1 dk €
—_=—— 23
k dt k 23)

With the second invariant of the anisotropic stress defined
asII=tr(b-b), it follows directly from Eq. (22) that

kdan __20-C,)

24
g dt C, @4)
Eqgs. (23) and (24) imply that
k n
n=1 25
° [ ko ] ( )

where n =2(1 - C,)/C,, . In Eq. (25), k, and 11, are reference
values taken as the first data point for which the gradient of
the mean field has been effectively removed. Parks (1997)
concluded that Cy = 2/3 by using return-to-isotropy data of
Choi and Lumley (1984) and of LePenven et al. (1985).
This phenomenon has also been explained by assuming that
the pressure-strain rate correlation in the second-order
moment equation for the Reynolds stress is proportional to
the anisotropic stress (Launder ef al., 1975). A value of C,,
= 2/3 in the foregoing APS-theory is equivalent to a Rotta
constant of three (cf. Speziale, 1991).

HOMOGENEOUS SHEAR
For homogeneously sheared turbulence, V<u> = yeye,
and ¥ = constant (see Figure 1). With <u’u">=2kR,

5 =Rycece + Rysee, =R e, =Ryee, =R e.e, (26)

The preclosure theory defined by Egs. (7) and (10) gives
the following relationships between the components of the
Reynolds stress and the components of the prestress (Parks
et al., 1998):

Ru= 2 +H,, @7)
3k
la

Ryy - EE + Hyy (28)



Ryz = _NRRyy + Hyz (29)

The other component equations for the Reynolds stress
follow from R = B_T and tr(R)=1. The first- and second-

normal stress differences are given by

R,, - Ry, = 1~% +H,— Hy, (30)

R

yy ~Rax = Hyy —Hyx (€2Y)

The above equations show that the primary role of the
isotropic prestress coefficient o is to redistribute the kinetic
energy of turbulent fluctuations among the velocity
components subject to the normalization requirement that
tr(R)=1.

<uz>(0) dy dy =7

Figure 1. Flow Configuration of Homogeneously
Sheared Turbulence.

For homogeneous shear, Eq. (13) reduces to

=1+2NgR,, + NgR,, (32)

=R

where Ny = 1, ¥ . An equation for Ny follows directly from

Egs. (17) and (18) by neglecting the mixing of turbulent
kinetic energy and of turbulent dissipation by molecular
and turbulent processes. With £=zy/<u, >(0),

dNg

a 2NRRy,(Cp-D+Cr(Cp-1) (33)

The APS-theory presented here assumes that Eq. (20)
governs the anisotropic prestress. With fI_EZkE , q=

l%< DBt >k, and De, = Ay , the component equations for
Hyx ;Hyy ,H,y , and Hy, are

De, fl;—éxi+(1+q)Hxx ~2Cyy DegHyz =0 (34)

dH
De, dgyy+(1+q)Hyy+(1+%CM)DetHyz=0 (33)

dH
De, dgjy +(l+q)H,, =0 (36)

dHyz

De
De, 5 +(1+q)Hyz+_2_t(sz_Hyy)

De 1 ky
=zt = —Cc, X
+Cy 5 (sz+Hyy) = 2C,B "

The equation for Hy, is the same as Eq. (36). The other
component equations of the anisotropic dyadic follow from

H=H" andtr (H)=0.

ASYMPTOTIC STATES
Homogeneously sheared turbulence has the interesting
feature that N (= &y / €) and the components of R remain

bounded as the flow develops, although k—c0 and g—»o0.
The existence of this asymptotic state implies that

dink dlneg
( & )z =( & )z—)oo (39)

If the mixing terms in Eqgs. (17) and (18) are neglected,
then Eq. (33) predicts the existence of an asymptotic state

for Ng (= Nj <o)provided the ratio of turbulence

production to turbulence dissipation remains bounded
(Parks, 1997):

—<u'u'>V<u> Cp-1
( )zpe0 = =2 (40)
I CP—I

Thus, with q — q* < o, De, - Def <o, and
Np = Np <o, Egs. (34)-(37) imply that (see Parks,
1997) Hgy = H;x =0, and

2 Def
HE, =3m 1+qt" Hy, (41)
me ——arle, )24 pa 42
yy——( +§ M)l+qa yz (42)
Cp ky 147
ng -G

(1+4%)? +(1—§CM2)(De;’>2

If Cg = 0, then the asymptotic state approaches the IPS
result inasmuch as ga =0.For Cy #0, Egs. 31), (41), and
(42) imply that

Def

1+g°9

q

R;y _Rgx = _(I"CM)

HE, (44)

Thus, the second normal stress difference is nonzero
provided Cg# 0 and Gy, # 1.

The statistical properties of homogeneous shear measured
by Tavoularis and Karnik (1989) imply that

(ky1€e)" =+4.16, R;z =-0.165, R{ =+0236, and



Rf,'y =+0.196 (see Parks et al, 1998). The asymptotic

second and third invariants of b consistent with these
results are II* = 0.138 and III* = 0.0174. For Re, >> 1, the
APS-theory contains four phenomenological coefficients:
Cum, Gy, Cp, and Cr. The complementary k-¢ model also
contains four coefficients: Cp, Cp, Cy, and C,. The mixing
constants, C, and C,, are important for inhomogeneous
flows (see Weispfennig et al., 1999), but do not play a role
in homogeneous shear flows

The application of the foregoing theory to isotropic and
anisotropic decay experiments implies that Cp = 1.83 and
C,. = 2/3. Eq. (40) is consistent with the asymptotic result
(- <ufuy >y/&)* =+1.37, provided Cp = 1.60. The three
remaining APS model coefficients were estimated by using
Egs. (27)-(29), Egs. (41)-(43), and the asymptotic data of
Tavoularis and Karnik (1989) with the result that Cyy = —

2/3, Cg = +0.174, and Cy = 0.271 (Parks, 1997). Table 1
gives a summary of these estimates.

Table 1. Parameter Estimates for the APS Theory.

Parameter | Estimate
kkkkkkkkkkkkkkkk fédfropic decay ‘(Cohkit“;)
c 1.83 Bellot and Corrsin, 1971,
b ’ Mansour and Wray, 1994;
Parks, 1997)
C 1.60 Existence condition for k-g
r : equations (Parks, 1997)
Return to isotropy data (III >
c 23 0; Choi and Lumley, 1983;
4 LePenven, et al., 1985; Parks,
1997)
Cr 0.271
Reproduction of asymptotic
c 0.174 state for homogeneous shear
s ’ (Tavoularis and Karnik, 1989;
Parks, 1997)
Cyr -2/3

TRANSIENT STATES
Figures 2 and 3 illustrate the transient response of Ny and

the components of R, respectively. The transient

calculations assume that an initially isotropic,
homogeneous turbulence state is subjected to an

instantaneous increase in ¥ . For§ <0,Ngx=0. For£ =0,
Ng = Nj >0. The Reynolds stress and the prestress are
equal and isotropic for £ < 0. At £ = 0, however, R
responds instantaneously to the sudden increase in y
whereas H =0 for £ = 0. Egs. (7), (10), and (32) are used
to calcul.;e the initial condition for the Reynolds stress.
With N =Crky®/e,
0

o_0C T
R =374, 4,

(45)
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where the operator éo is defined by Eq. (8) with N = N§.

Because g" =0, it follows from Eq. (36) that H,, = 0 for
£>0.

12
1.0 |
&
=
08 |
0.6 TR .
0.1 1 3 10 100

Figure 2. Response of the Relaxation Group to a Sudden
Increase in the Mean Strain Rate (N =0.7 ;

- - -, asymptotic state N g =1.13 , Parks et al.,
1998).
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Figure 3. Response of the Reynolds Stress to a Sudden

Increase in the Mean Strain Rate (N§ = 0.7 ;

- - -, asymptotic state, Tavoularis and Karnik,
1989; Parks et al., 1998).

The transient behavior of the nontrivial components of the
anisotropic prestress and the preclosure relaxation group
Nr were determined numerically by using a fourth-order
Runge-Kutta integration algorithm (Carnahan et al., 1969).

The initial state characterized by N = 0.7 was selected to

closely approximate the initial state of the experimental
data slightly downstream of the imposed mean shear field



(ie., II° = 0.0936 and III° = 0.00626). The calculations
show that the asymptotic state obtains for
z=20<u, >(0)/y, a theoretical prediction consistent
with the previously reported IPS-theory (see Parks et al.,
1998) and with experimental observations.

Experimental Asymptote;
Tavoularis and Karnik, 1989
0.10 |
~ Realizability
~ Boundary
0.05
a _, b, stage 1 (instantaneous)
b _, c,stage2 (slow relaxation)
0.00 P L . . .
-0.005 0.000 0.005 0.010 0.015 0.020 0.025

|

Figure 4. Response of Isotropic Turbulence to a Sudden
Increase in the Mean Strain Rate (N§ = 0.7 ).

CONCLUSIONS

The isotropic and anisotropic parts of the prestress model
represent two distinct responses of the turbulence to a
sudden change in the local mean field. The isotropic
portion of the prestress causes an instantaneous response to
the mean shear rate, immediately reorganizing the
Reynolds stress to an anisotropic state consistent with the
IPS-theory and the local statistical state of turbulence.
Subsequently, the components of the anisotropic prestress
relax towards their asymptotic values.

Figure 4 summarizes the transient response in terms of the
second and the third invarianis of the anisotropic stress.
The experimental data of Tavoularis and Karnik (1989) are
also shown on Figure 4. On a very short time scale (i.e.,
0 <& < 1), the turbulence relaxes back towards an isotropic
state in response to the maldistribution of energy caused by
the initial response. However, this tendency towards
isotropy is reversed by the relatively slow development of
the anisotropic prestress and second normal stress

difference. The turbulent Deborah number, Ay , controls
the relaxation of the Reynolds stress towards an anisotropic
asymptotic state.
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