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ABSTRACT

A low-Reynolds-number second-moment closure with-
out wall-reflection redistribution terms is tested in wall-
bounded turbulent flows with streamline curvature. The
test cases are two fully-developed curved channel flows
and four boundary layers on curved walls. The tur-
bulence model captures main features of the stabilizing
and destabilizing effects of streamline curvature, though
some notable discrepancies between the predictions and
measurements are present in boundary layers on convex
walls.

INTRODUCTION

The “basic” second-moment turbulence closure (see
Launder, 1989) and its low-Reynolds-number variants
(e.g. Launder and Shima, 1989; Shima, 1993) have been
widely used with success to calculate various turbulent
flows. A weakness of these closures is that they con-
tain wall-reflection redistribution terms which are for-
mulated using the wall distance and wall-normal vector.
Due to these elements, it is difficult to apply the models
to flows with complex wall geometries.

Recently Shima (1998) proposed a low-Reynolds-num-
ber second-moment closure which adopted a quasi-linear
rapid redistribution model but eliminated the conven-
tional wall-reflection redistribution terms. In that pa-
per, the model was tested in fully-developed channel
flow, boundary layers in zero, adverse and favorable
pressure gradients, and plane and round jets. The per-
formance was generally good, encouraging further test-
ing of the model in various turbulent flows.

Turbulent flow with streamline curvature is of consid-
erable engineering interest. Testing of turbulence mod-
els in a variety of such flows is clearly needed before a
sufficiently general model is establihed. In the present

study, we test the second-moment closure in two curved
channel flows and four boundary layers on curved walls.

TURBULENCE MODEL

In this section the second-moment closure proposed
by Shima (1998) is summarized. The stress transport
model can be written as
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where U; and u; denote the mean and fluctuating ve-
locity vectors, respectively, £ is the turbulence energy,
€ 1s its dissipation rate, v is the kinematic viscosity, and
the overbar implies the ensemble averaging. In Eq.(4),
P = P;;/? is the production rate of k, and
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The diffusion coefficient Cs; = 0.22, and the four coeffi-
cients of redistribution terms are determined as

Cr=1+2454," A1 — exp{—(74)*}]

(7)
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Table 1 Test cases

Case Investigators Flow type §/R
1 Moser and Moin Curved channel flow =0.0127
2 Kobayashi et al. Curved channel flow = 0.0417
3 Hoffmann and Bradshaw | Boundary layer on concave wall | =~ 0.01
4 Hoffmann and Bradshaw | Boundary layer on convex wall ~ 0.01
5 Gillis and Johnston Boundary layer on convex wall ~0.1
6 Alving et al. Boundary layer on convex wall ~0.1

X[l = exp{—(Rr/60)’}] (3)
C, =074 (9)
Cs = 0.34° (10)

Cy = 0.654(023C, + Cy — 1) +1.34,'*C; (11)

where A and A, are the invariants of the stress anisotropy
tensor a;; = uu;/k — 26;;/3 defined by
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and Ry = k2/1/e is the turbulence Reynolds number.
The transport model for ¢ is
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The coefficients Cez and C. are assigned standard val-
ues, i.e. Ce2 = 1.92 and Cc = 0.15. For the coefficient
Ce1, the form

Ca=1444p1 +p2 (17)

/1 =0.25Amin(A\/2.5 — 1, 0) — L.4Amin(P/e—1, 0)
(18)

B2 = 1.0AX\% max(\/2.5 — 1, 0) (19)

A = min(\*,4) (20)
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is adopted. For more details of the closure, see Shima
(1998).

TEST CASES

Table 1 summarizes the test cases. In curved channel
flows (Cases 1 and 2), 6 denotes the channel half-width,
and R is the radius of curvature of the channel center-
line. For boundary layers (Cases 3 ~ 6), & denotes
the boundary layer thickness, and R is the radius of
curvature of the wall. Case 1 is a fully-developed flow
in a circularly curved channel which Moser and Moin
(1987) created by direct numerical simulation (DNS).

222

In this case the curvature is mild. Case 2 is also a fully-
developed curved channel flow from Kobayashi et al.’s
(1989) experiment in which the curvature is stronger
than in Case 1. Cases 3 ~ 6 are boundary layer flows
on curved walls taken from well-known experimental
investigations. In Cases 3 and 4 (Hoffmann and Brad-
shaw) the curvature is mild, while Case 5 (Gillis and
Johnston, 1980) and Case 6 (Alving et al., 1990) are
strongly curved flows. Cases 5 and 6 include recovery
flow on a flat wall downstream of the curved section.
The experimental data of Cases 3, 4 and 6 are obtained
from CTTM Data Library (1993).

In Cases 1 ~ 3, due to instabilities associated with
concave curvature, Taylor-Gortler vortices may exist.
In the experiment of Case 2 the authors observed no
longitudinal vortices, while in Cases 1 and 3 Taylor-
Gortler vortices are present and the statistics vary in
the spanwise direction. However, we make one-dimen-
sional calculation for Case 1 as well as Case 2, and
two-dimensional calculation for Case 3, as suggested
for Case 3 at the 1980-81 Stanford Conference (Kline
et al., 1981). '

In case of fully-developed curved channel flow, the
governing equations in cylindrical coordinates 7-0-z re-
duce to a set of ordinary differential equations. The
equations were discretized by a second-order accurate
finite-volume approach and then solved by an iterative
method. The number of grid points was 140, concen-
trated toward the wall. Grid independence was con-
firmed by using 70 point grid without any perceptible
effect on the results.

In case of boundry layer, the governing equations to
be solved are obtained by applying the boundary layer
approximation to the mean flow and turbulence model
equations expressed in a coordinate system whose ab-
scissa x is measured along the wall, the ordinate y being
measured at right angles to it. The numerical solutions
were obtained with an adapted version of the parabolic
solver PASSABLE (Leschziner, 1982). For the solution
procedure, see Launder and Shima (1939) and Shima
(1993).

RESULTS

Figure 1 compares the second-moment closure (de-
noted by Sh model) with DNS data for fully-developed
curved channel flow at Uc§/v = 2990 (Case 1), where U,
is the centerline velocity. In Fig.1(a), the mean velocity



in the streamwise direction U and the distance from the
wall y are nondimensionalized with local friction veloc-
ities. In Figs.1(b) and 1(c), U, denotes the global fric-
tion velocity defined by analogy with the plane channel
using the pressure gradient. The locations (r — R)/6 =
—1 and 1 correspond to the convex and concave walls,
respectively. Reynolds numbers based on the predicted
local friction velocities and é are 153 at the convex side
and 178 at the concave side, close to DNS values, 155
and 180, respectively. As is seen, the mean velocity
and shear stress profiles are reproduced well by the
prediction, though the difference between convex-side
and concave-side velocity profiles is somewhat overpre-
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Fig.l Curved channel flow (Case 1): (a)Mean velocity in

wall coordinates (b)Shear stress (c)Turbulence intensities

dicted. For the turbulence intensities the model prop-
erly yields asymmetric profiles, but does not reproduce
the high anisotropy in the wall vicinity, as expected
from the result for plane channel flow (Shima, 1998).
Figure 2 shows the performance in the curved channel
flow with stronger curvature at U,,§/v = 10000 (Case
2), where Uy, is the bulk mean velocity. Reynolds num-
bers based on the predicted local friction velocities are
456 at the convex side and 596 at the concave side,
somewhat lower than DNS values, 487 and 606, respec-
tively. As is seen from Fig.2(a), the present model cap-
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Fig.2 Curved channel flow (Case 2): (a)Mean velocity

(b)Mean velocity in wall coordinates (c)Shear stress
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tures the stabilizing and destabilizing effects of cur-
vature, giving an asymmetric velocity profile close to
experimental data. When plotted in wall coordinates
(Fig.2(b)), the predicted convex-side profile lies above
the measured profile due to the underpredicted skin fric-
tion, indicating that the model somewhat overpredicts
the stabilizing effect of convex curvature. In Fig.2(c),
the calculated shear stress deviates appreciably from
experimental data. The figure includes a total shear
stress distribution calculated from measured wall shear
stresses, which is not fully consistent with the measured
Reynolds shear stress. Therefore, the disagreement be-
tween the prediction and data in Fig.2(c) is not conclu-
sive.

Turning to boundary layers, the result for the case
of mild concave curvature (Case 3) is shown in Fig.3,
where U, denotes the potential flow velocity, Upw 1s Up
at the wall, and the skin friction coefficient is defined by
Cy = ZTw/pUgw( Tw: wall shear stress, p: density). A
prediction using another low-Reynolds-number second-
moment closure (denoted by LS™ model) which adopts
the wall-reflection redistribution terms is also plotted
for comparison. This closure is a slightly modified ver-
sion (Shima, 1993) of the model proposed by Launder
and Shima (1989). The response of the boundary layer
to applied concave curvature is rather slow (see Hoff-
mann et al., 1985). As is seen from Fig.3(c), a high
shear stress region grows gradually in the outer layer
with increasing streamwise distance, due to the destabi-
lizing effect of concave curvature. At the last measure-
ment station, the region is very wide. The Sh model
captures this behavior, while the LS* model does not.
As shown in Fig.3(a), the skin friction also increases
appreciably in the streamwise direction, and the Sh
model predicts the experimental variation well. The
mean velocity profiles are also reproduced faithfully by
the model.

Figure 4 compares the predictions with experimen-
tal data for Case 4. In this case the effect of curva-
ture on skin friction coefficient is less evident than in
Case 3, but in the outer layer the mild convex curva-
ture appreciably reduces the shear stress. The shear
stress profiles at two stations are shown in Fig.4(c).
At Station 2, just after the start of convex curvature,
the outer layer quickly responds to the curvature, and
the shear stress decreases considerably. This quick re-
sponse contrasts with the relatively slow response to
concave curvature in Case 3 (see Muck et al., 1985).
The prediction with Sh model captures this quick re-
sponse, but gives an excessively large reduction. As is
seen from the profile at Station 3, the predicted shear
stress then increases downstream, whereas the experi-
mental data show a slow decrease. As is seen from Figs.
4(a) and 4(b), the Sh model slightly underpredicts the
skin friction coefficient, and gives good predictions for
mean velocity profiles.

Figure 5 shows the comparison between measure-
ments and predictions for Case 5. The two models cap-
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° Data Hof fmann-Bradshaw ture the marked reduction in skin friction in the highly

Prediction by Sh model curved section, but the Sh model gives an excessively
--------- Prediction by LS* model large reduction. In the shear stress profile at Station

5 in the curved section, the Sh model well reproduces

4 % 103 (@) the profile in the outer layer including a negative stress

| region, but underpredicts the peak value near the wall,
leading to low Cy. The very slow recovery in the exper-
iment is not captured by either of two models. In this
case, overall the prediction with LS* model is closer to
measurements than that with Sh model.
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from strong convex curvature, and no measurements are
available in the curved section. In the curved section
steep pressure gradients exist, and the predicted skin
friction varies in a complex manner under the effects of
curvature and pressure gradient. In this strongly curved
section, the Sh model seems to give better prediction
than the LS™* model, in contrast to Case 5. At Station 3,
just after the removal of wall curvature, the predicted
Cj agrees well with the experimental value. At this
station, however, the peak value of the shear stress is
overpredicted, Fig.6(b). This leads to somewhat too
large skin friction in the recovery and too high level of
shear stress at the last measurement station.

CONCLUDING REMARKS

A second-moment closure without wall-reflection re-
distribution terms has been tested in six different wall-
bounded flows with streamline curvature. On the whole,
the turbulence model with no curvature-specific modi-
fications captures main features of the stabilizing and
destabilizing effects of streamline curvature. As ex-
pected, the elimination of wall-reflection redistribution
terms does not cause difficulties in predicting the ef-
fects of streamline curvature. In boundary layers on
convex walls, some notable discrepancies between the
predictions and measurements are present. We feel that
it is possible to obtain better predictions by refining
model functions in the redistribution term and in the
dissipation-rate transport equation.
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