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ABSTRACT

Fully-developed low-Reynolds-number turbulent flow
through straight permeable pipes with circular cross-
section is investigated by means of direct numerical simula-
tion. Three different cases of wall permeability are treated
and compared with the case of a solid wall. In two of these
cases the wall satisfies the no-slip condition, but allows for
the wall normal velocity fluctuations in two different ways.
In the third case, the pipe wall has rectangular openings
of size 6 (AzJr X (RAgo)"'), regularly distributed over the
whole surface, similar to a chess-board where the black ar-
eas represent the openings and the white ones the solid
wall. Velocity boundary conditions in the openings are
such that the mean mass flux across the wall is zero and
the flow in the openings is stress free. All flows are driven
by the same mean pressure-gradient. Consequently, those
flows which satisfy the no-slip condition have the same wall
shear stress and hence the same turbulence Reynolds num-
ber Rer = 360. Pipe flow with wall openings exhibits a
small, but finite Reynolds shear stress at the wall. If the
friction velocity is defined via the total stress at this wall,
the flow has nominally the same turbulence Reynolds num-
ber. The overall effect of a permeable wall with rectangu-
lar openings is a mean axial slip velocity at the wall and
reduced viscous stress. In a thin near-wall layer of thick-
ness v/u, the turbulence activity is increased compared to
the flow cases where the velocity components satisfy the
no-slip condition. All three rms-velocity fluctuations are
non-zero. As a result the structure of the Reynolds stress
tensor is modified in this region. This is also reflected in
higher order central moments of the velocity fluctuations.
A permeable wall with rectangular openings may be viewed
as a model for a rough wall with a mean non-dimensional
roughness height of 8.3 wall units. Close to such a wall the
budgets of the Reynolds stress tensor differ strongly from
those for flow along a smooth impermeable wall.

INTRODUCTION

In recent direct numerical simulations (DNS) Wagner
and Friedrich (1998a, 1998b) have shown that turbulent
flow through partially permeable pipes behaves similarly

to flow through rough pipes. Wall permeability was mod-
elled in such a way that the no-slip condition for the tan-
gential components was retained, while the wall normal ve-
locity was extrapolated from inner points and damped at a
constant rate in accordance with the continuity condition.
The analogy to flow through rough pipes was deduced from
a comparison of mean velocity profiles with Nikuradse’s
log-law for rough pipes (Schlichting (1968)). The effective
roughness heights obtained from this analogy varied from
15.5 to 19.8 wall units. Considerable changes in the turbu-
lence structure were observed in the permeable wall cases
as compared to the smooth solid wall case. They were do-
dumented in terms of rms-velocity fluctuations, Reynolds
shear stress and flatness factors of the three velocity fluctu-
ations. Two-point correlations of axial velocity fluctuations
in the buffer layer indicated a slight reduction in the streak
spacing which is not obvious when instantaneous contour
lines of axial velocity fluctuations are compared.

In the present investigation we go a good step further and
relax the no-slip constraint at the permeable wall assuming
square openings in the wall in which velocity fluctuations
can develop freely in all three directions. This is achieved
on the basis of stress-free boundary conditions and the con-
tinuity condition. The pipe with openings can be imaged
as being surrounded by a pipe of bigger diameter filled with
the same fluid.

The paper contains a discussion of the numerical method
used to integrate the incompressible Navier-Stokes equa-
tions, the boundary conditions and computational param-
eters. Most of the results deal with a comparison of mean
flow quantities for three different permeable walls and a
solid wall. Changes in the turbulence structure resulting
from the wall permeability are discussed in terms of second
and higher order central moments of the velocity fluctua-
tions and finally in terms of budgets of the three normal
Reynolds stresses.

NUMERICAL METHOD AND COMPUTA-
TIONAL DETAILS

The Navier-Stokes equations for incompressible flow

V.-i=0 (1)
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are integrated in a cylindrical (z,¢,r)-coordinate system
using staggered grids and second-order central differenc-
ing. A semi-implicit time-integration scheme advances
the solution in time. Only those convection and diffu-
sion terms are treated implicitly which contain derivatives
in the circumferential direction. Thus, time step restric-
tions resulting from small grid spacing rA¢ near the cen-
terline are avoided. The remaining convection terms are
advanced in time using the second-order accurate leap-
frog scheme. The pressure gradient is split into a constant
mean part which drives the flow and a fluctuating part.
The latter is neglected in the first sub-step of the projec-
tion method and then used to correct the velocity field.
The 3D Poisson equation which provides the fluctuating
pressure field is solved directly via FFT in the homoge-
neous (z,p)-directions and a standard tridiagonal matrix
algorithm.

Boundary conditions

The fluctuating pressure and instantaneous velocity vec-
tor are periodic in axial and circumferential directions.

At the wall, the fluctuating pressure satisfies a von
Neumann-condition, irrespective of wether the wall is solid
or permeable. No-slip and impermeability conditions hold
at the solid wall (DNS 1). In the two permeable wall cases,
the no-slip conditions

vy =up =0, at r=R 3)
are satified, but the wall permeability for the radial velocity
component is modelled as follows:

(%rt)r=r = a(¥rr)r=R-Ar, at r=R. (4)
If the extrapolation of u, violates the mass balance, con-
tinuity is enforced after step (4). In case of DNS 2, each
cell along the wall is partially permeable, with a = 0.975.
In DNS 3 each second wall cell in (z, ¢)-directions is either
solid (@ = 0) or perfectly permeable (o« = 1). Finally, in
DNS 4 the wall has rectangular openings, in which zero-
stress conditions
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are satisfied along with the continuity condition
Ou, , 10u, , 10ru,
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Computational parameters

The domain in which the computations are performed
is a pipe of diameter D = 2R and length 5D. It is re-
solved by an equidistant grid of 480 x 240 points in (z, ¢)-
directions, respectivly. Along the radius (R) 70 points
are non-equidistantly distributed, with the first point at
y* = 0.185. The Reynolds number based on friction ve-
locity u, and diameter D is Re, = 360. In wall units the
grid spacing is

Azt =3.75
(rtAp) = 0.073 = 4.71 (8)
Art =0.185 +5.56

The wall openings in the case of DNS 4 have the size
(1/8 x 7/20)R? in (2, ¢)-directions or (22.5 x 28.26) in wall
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Table 1: Parameters of fully developed turbulent flow
in pipes with partially permeable walls (DNS
2,3,4) and a solid wall (DNS1).

DN3S 1 2 3 1

Re- 360 360 360 360
o 0.0 | 0.975 B B

Res 5317 | 4406 | 4691 | 5252
UpJu, | 14.77 | 12.24 | 13.03 | 14.59
A-10%7] 367 | 5.30 | 4.71 | 3.76
kr/D N 0.055 | 0.043 | 0.023
33 - 19.8 [ 155 | 8.28

units which corresponds to (6 x 6) cells. They are arranged
similarly to a chess-board where the black fields represent
the openings.

In all simulations the flow was observed and averaged
over more than 10 eddy turnover times D/u, during
which the bulk velocity remained stable. The computa-
tions were started from previous DNS of pipe flow along
solid/permeable walls.

RESULTS

Mean Flow Field

We use triangular brackets to define statistical averages.
Except for (p), they are obtained from DNS data by sam-
pling in z- and @-directions and in time. Table 1 presents
an overview over the four direct simulations performed,
including global flow parameters like Re., the Reynolds
number Res, based on bulk velocity Up and the friction
factor A defined by

&(p) Apr2
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A roughness height kg, underlining the similarity be-

tween flow through permeable and rough pipes, is com-

puted, using Nikuradse’s law for the rough pipe (Schlicht-
ing (1968)):

[C (L)
. =2.87In i) TE48 (10)

with a slope modified from 2.5 to 2.87.

The numbers in Table 1 indicate that wall permeability
reduces the flow rate through the pipe and increases the
drag due to enhanced turbulence activity. Permeable walls
act similarly to rough walls with roughness heights reaching
the buffer layer of turbulent flow through a solid pipe.

The mean axial momentum transport in all flow cases is
governed by the balance between pressure gradient, viscous
and Reynolds shear stress:

_r1dp) , , du.)

— (usu,) =0. 11
2p Oz Y dr (wsur) (1)
This equation already reflects the linearity of the total
shear stress (sum of viscous and Reynolds stress). If in
all flow cases the pressure gradient is used to define the
friction velocity according to
/] 2
) L,z (12)
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then eq. (11) takes the form:
+ =1-2L
D’ (13)



Figure 1: Mean velocity profile in a solid and in per-
meable pipes. DNS 1: ,DNS 2: --
-,DNS3: —.—.,DNS4: .... LDA-
Measurements Westerweel et al. (1992): O
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Figure 2: Mean velocity profiles versus wall distance

normalized with the roughness height. DNS

2: O, DNS 3: +, DNS 4: x , Nikuradse’s

log-law:

where the y-coordinate has been introduced as y = R—r.

It is easy to show that Taylor expansions of u} = (u,)/u,

near the wall, in terms of powers of the wall coordinate
yt = yu, /v, have the following forms:

Solid wall (DNS 1):
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Figure 3: Profiles of axial rms-velocity fluctuations.
DNS 1: , DNS2: --- DNS 3:

Permeable wall with no-slip condition (DNS 2,3):
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Permeable wall with stress-free openings (DNS 4):

uwf = wf(0)+(- (ujlu:rl)o)y+ -

2 d 1 ] +2
(R_er + ;i—;(u: u: ))o ZE— — e (16)

Along a solid wall, a viscous sublayer of thickness 5v/u,
develops in which the velocity profile is linear. The perme-
able wall with vanishing tangential velocity components
experiences the full viscous stress, but due to the rapid
near wall raise of the Reynolds shear stress there is no vis-
cous sublayer. The velocity profile is parabolic close to the
wall. At the permeable wall with openings, we observe in
the mean a small, but finite slip velocity u; (0) and reduced
viscous stress. Again, there is no viscous sublayer and a
parabolic velocity profile close to the wall.

Figure 1 shows mean velocity profiles in wall units for
solid and permeable pipes. The solid wall data compare
very well with LDA measurements of Westerweel et al.
(1992) for the same Reynolds number. Permeable pipes
generate profiles with a downward shift of the core layer
part. This behaviour is also typical for flow through rough
pipes. A ’first-order’ similarity between flow through per-
meable and rough pipes is obvious from Figure 2 where
the mean velocity is plotted against y/kr. The law for the
rough pipe, eq. (10) is hence valid in the core region of any
of the flows through permeable pipes. Further similarities
have to be searched, based on the turbulence structure.

Second and Higher Order Moments

uw,rma/ur

Figure 4: Circumferential rms-velocity fluctuations.
Lines as in Fig. 3

Figures 3,4 and 5 present the effect of wall perme-
ability on the rms-velocity fluctuations. While the axial
and circumferential components are zero at the wall for
DNS1,2,3 due to the no-slip constraint, these values are
finite for a pipe with openings (DNS 4). Between the wall
and the position of maximum TKE production the turbu-
lence activity is enhanced compared to the solid wall case.
In a thin layer of the order of the classical viscous sub-
layer, the stress-free boundary conditions along with the
finite wall-normal fluctuations lead to a local maximum
of ¢>,rms at the ’wall’ and to a local maximum of %y rms
within that layer. Figure 6 shows the total shear stress
and the Reynolds shear stresses for DNS 1,2,3,4. The wall
openings generate a non-zero Reynolds shear stress along
the wall. Accordingly the viscous stress is reduced there.
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Figure 5: Profiles of radial rms-velocity fluctuations.
Lines as in Fig. 3
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Figure 6: Profiles of total and Reynolds shear stresses.
Lines as in Fig. 3

The flatness factor of fluctuating quantities indicates inter-
mittency effects when it reaches high values and random
motion (a Gaussian pdf) for a value of three. In this sense
the wall normal velocity fluctuations reflect an intermit-
tent behaviour close to a solid wall which, according to Xu
et al. (1996), is due to strong sweep events, see Figure 9.
Wall permeability tends to reduce the high near wall ampli-
tudes of F(u}) and to increase those of F(u}) and F(uy,),
see Figures 7,8. The pipe with openings (DNS 4) does not
seem to follow the behaviour of the two other permeable
pipes (DNS 2,3) what the axial fluctuations is concerned
(Figure 7).

The fact that F(uy) has lower values close to the wall
than even the solid wall case (DNS 1) is, however, due to

F(uy)
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Figure 7: Flatness factors of axial velocity fluctua-
tions. Lines as in Fig. 3
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Figure 8: Flatness factors of circumferential velocity
fluctuations. Lines as in Fig. 3
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Figure 9: Flatness factors of radial velocity fluctua-
tions. Lines as in Fig. 3
the near wall increase in the axial rms-velocity fluctuations.

Reynolds Stress Budgets

For a better understanding of the changes in the turbu-
lence structure due to wall permeability, we present profiles
of all the terms appearing in the transport equations for the
normal stresses. The three cases DNS 1, DNS 3 and DNS
4 are compared. The equations for the fully developed,
non-swirling flow can be found in Eggels et al. (1994).

The symbols used, indicate production (P), turbulent
diffusion (TD), pressure diffusion (PD), pressure-strain
(PS), viscous diffusion (VD) and dissipation (D). For better
visibility, only parts of the profiles are presented, namely
those from the wall up to y* = 60. Since the near wall
behaviour of the terms strongly depends on their wall val-
ues, we provide a table showing wether these values are
zero (0) or finite (f). Several terms have finite values at
permeable walls only due to transverse curvature. This is
true for various PS, PD and TD terms and constitutes the
differences to corresponding channel flow. In the follow-
ing figures 10-12 we discuss the effect of wall permeabil-
ity on the budget of each of the normal stresses, starting

Table 2: Wall \{alues 9f tern}s in the balance equations
for (u?), (v2), (u,%). Zero/finite values are
indicated by 0/f.

P D | PS [ PD | TD [ VD
DNS1 | 0,0,0 | 11,0 | 0,0,0 | 0,0,0 | 0,0,0 | 11,0
DNS3(70,0,0 | 141 | 0,51 | 041 [ 0,01 | Tif
DNS4 | ,0,0 | LI | T4 | 011 | LI | 011
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Figure 10: Terms in the budgets of (u.2) for DNS 1 in

a), DNS 3 in b) and DNS 4 1n ¢). Lines as

in c).
with the axial component, Figure 10. While at solid walls
viscous diffusion and turbulent dissipation balance, there
is a non-negligible contribution to this balance from the
pressure-strain correlation at a wall with openings (DNS
4). Moreover the amplitudes of VD and D at the wall are
strongly increased (DNS 4). This is already the case at
walls which allow only for ur-fluctuations (DNS 3). The
peak values in the production rates are practically unmod-
ified. The nearly linear increase in P close to the perme-
able wall of DNS 3 is a consequence of the behaviour of
the Reynolds shear stress. The budgets of (u:f) are shown
in Figure 11. This component gets energy from the longi-
tudinal component via redistribution. The PS-term of the
(u:,?) peaks where the production term of (u2) has its max-
imum. The PS-term, however, peaks a second time even
closer to the wall in DNS 4. This effect correlates properly
with the large negative values of PS in the (u?)—budgets
and with the relative maximum in the axial rms-velocity
fluctuations (Figure 3). The overall behaviour of the other
budget terms is quite similar in all the 3 cases. From the

(ul,2 )-budget it is known (already from channel flow) that

PS and PD have peaks and balance within the viscous sub-
layer of a solid wall. The same balance still holds for DNS
3 and the peaks are even at the same positions. The peak
amplitudes have, however, increased by more than 20%.
A further increase in these locally maximal amplitudes is
observed in case of DNS 4. Yet, PD and PS do not attain
zero wall values, but extreme values on the opposite sides.
This is probably the most striking feature of this flow case,
namely positive PS-values at the wall with openings which
are roughly 16 times larger than those at the peak position
of (u?) in solid pipe flow. It sheds some light on the im-
portance of PS and PD-modelling in the balance equation
for the velocity fluctuations in the direction of mean shear
of shear driven turbulence.
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Figure 11: Terms in the budgets of (u:}) for DNS 1in
a), DNS 3 in b) and DNS 4 in c). Lines as
in 10c).

CONCLUSIONS

Direct numerical simulation was used to investigate the
changes in the turbulence structure induced by wall per-
meability which to first order act as wall roughness in fully
developed, non-swirling pipe flow. It is found that walls
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Figure 12: Terms in the budgets of (ulrz) for DNS 1 in
a), DNS 3 in b) and DNS 4 1n c). Lines as
in 10c).

with openings (DNS 4) in which zero-stress conditions are

used provide the strongest changes in the flow structure as

compared to flow in smooth impermeable pipes (DNS 1).

These changes are

e A mean axial slip velocity and a small positive
Reynolds shear stress leading to reduced mean shear
rate at the wall, but only slightly reduced bulk veloc-
ity.

o Non-zero rms-velocity fluctuations at the wall and in
turn enhanced turbulence activity close to the wall.

e The turbulence production rate is non-zero at the
wall. Likewise, are pressure-strain and turbulence dif-
fusion terms of the u,-budgets and pressure-diffusion
terms of the (uy, ur)-budgets non-zero.

o The most striking feature of DNS 4 are the high pos-
itive level of the pressure-strain correlation and the
high negative level of the pressure-diffusion term in

the (uI,2 )-balance.

These results shed some light on the importance of PS-
and PD-modelling especially in the balance equation for
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the velocity fluctuation in the direction of main shear. It
would be interesting to compare these results with detailed
measurements in the vincinity of rough walls and to see,
to what extent permeable walls are useful models of wall
roughness effects.
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