DNS of an unsteady turbulent channel flow driven by
a temporary sinusoidal pressure gradient

H. Kawamura and K. Honma

Department of Mechanical Engineering, Science University of Tokyo
Noda-shi, Chiba 278-8510, Japan

Y. Matsuo

National Aerospace Laboratory
Chofu-shi, Tokyo 182-8522, Japan

1 Introduction

With aid of the recent development of comput-
ers, various direct numerical simulations( DNS ) of
turbulence are performed. Although the turbulence
itself is unsteady in nature, the mean flow is as-
sumed steady in most of the DNS’s. This is because
the DNS of the turbulence with an unsteady mean
flow requires more computational effort to obtain a
stable statistical averaged quantities. In the present
study, a temporally sinusoidal pressure gradient is
imposed on the turbulent channel flow. The each
sinusoidal period is divided into a number of phases
and statistical average is obtained for various tur-
bulence quantities.

2 Numerical procedures

The computational domain is given in Fig. 1.

Figure 1: Computational domain

The fundamental equations are
the continuity equation :
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and the momentum equation :
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The sinusoidal pressure gradient is specified as

Pl = Asin;—il;t“L + 1.0, (3)
where the variables are normalized by channel half
width § and the friction velocity u,s for the steady
state; that is, A=0. The constant value of 1.0 cor-
responds to the steady pressure gradient with A=0.
The amplitude A has been set to 6.0. This selec-
tion is rather arbitrary. It causes the flow rate to
oscillate about + 50 % around a mean value. The
time of one cycle TV is 6.0, which is so selected
that an unsteady effect appears while flow reversal
does not take place. The Reynolds number for A=0
is Rers = 180, which is the value often simulated
since the first DNS by Kim et al (1987).

The propagation speed of pressure, is assumed
to be enough large so that the mean pressure gra-
dient is uniform in the whole channel and thus the
flow is assumed to be fully developed in the stream-
wise direction. The mean flow is in x direction. The
periodic boundary condition is applied in x and z
directions. The computational conditions are given
in Table 1. The discretization scheme was a so-
called ’consistent scheme’ by Kawamura (1995), in
which a special attention is paid for the consistency
between the analytical and the numerical differen-
tiations so that not only the momentum but also
the kinetic energy can be well preserved.



3 Results
3.1 Mean velocity profiles

Fig. 2 shows the variation of the pressure gradi-
ent. One cycle is divided into 16 phases. The tur-
bulence quantities are averaged within each phase
over 15 cycles. The mean velocity, which is aver-
aged over the channel section, is given also in Fig.
2. Its maximum and minimum points are shifted
from those of the pressure gradient. The mean ve-
locity increases for the positive pressure gradient,
it decreases for the negative pressure gradient. The
variation of the ensemble averaged velocity profile
is shown in Figs. 3 and 4.

The velocity in Fig. 3 is normalized by urs.
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Figure 2: Change of pressure gradient and bulk
mean velocity
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Figure 3: Mean-velocity profiles normalized by u,s

The velocity in Fig. 4 is normalized by the instan-
taneous friction velocity u,«. In the acceleration
phase, the profiles are flattened in the channel cen-
ter, while it is more peaked in the deceleration one.
The mean velocity averaged over one cycle is also
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Figure 4: Mean-velocity profiles normalized by u;«

given in Fig. 4. It is rather larger than the steady
state one (A=0). This indicates that the present
oscillatory pressure drop results in a higher total
flow rate than the steady state one for the same
time averaged pressure gradient. The mean veloc-
ity is replotted in the semi-logarithmic coordinates
in Fig. 5. The mean velocity in this plot is mostly
larger than the well-known steady state logarithmic
distribution, which suggests a kind of ”laminariza-
tion” takes place.
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Figure 5: Mean-velocity profiles normalized by u,«

The friction coefficient :

C = 27w/ plim” (4)
is shown versus the instantaneous Reynolds number
Re,, = up26/v in Fig. 6. The plots draw a circle
around the steady state correlation given by Dean
(1978) : Cf=0.073Re;,1/ *. The friction coefficient
is larger than the steady state correlation in the
early period of the acceleration (phase 1-2), while
it is smaller in most of the period. The dependence

of Cy upon Rey, is more pronounced than in the
steady state.
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Figure 6: Dependence of wall shear stress on
Reynolds number

3.2 Turbulent kinetic energy

The distribution of the turbulence energy nor-
malized by u,s is given in Fig. 7. It is very much
different from the one for the steady state. The tur-
bulence energy is larger than the steady state one
when the pressure gradient is decreasing (phases
8-13), while it is smaller when increasing (phases
14-15). The peak of the turbulence energy arises
away from the wall compared in the steady state in
both acceleration and deceleration periods.
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Figure 7: Turbulent kinetic energy normalized by
2
uTS

Next, the turbulence energy normalized by the
instantaneous friction velocity u,42 is shown in Fig.
8. In this case, the normalized & is larger than the
steady state one in the deceleration period (phase
8-16), while smaller in the acceleration one (phase
1-6).
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Figure 8: Turbulent kinetic energy normalized by
2
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Figure 9: Total shear stress normalized by ..

To examine the above points, the total shear
stress is shown in Fig. 9. In the acceleration period,
the total shear stress is decreased. The averaged
momentum equation can be expressed as
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When the above equation is integrated from y = 0
to y = y, it becomes
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Thus, the total shear stress normalized by the in-

stantaneous friction velocity .42, can be obtained
as

— dE
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In 1tLhe acceleration period, velocity-gradient term
Py« becomes large; on the other hand, the acceler-

: Faud
ation term [j S
because the velocity itself is small. Thus the gradi-
ent of the total shear stress exhibits a large nega-

tive value in the wall vicinity. The Reynolds shear

dy} is small in the wall vicinity
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Figure 10: Reynolds shear stress normalized by
2
Urx
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Figure 11: Budget of turbulent kinetic energy in
the acceleration period (phase 6)

stress is shown in Fig. 10. It suppressed is in the
acceleration period. This is because the total shear
stress itself is decreased in the acceleration period
as discussed above.

The budget of the turbulent energy is shown in
Figs. 11-14. In the acceleration period, the peak of
the production is much smaller than its steady state
value of 0.25. This is because the Reynolds shear
stress is decreased as seen in Fig. 10. These indi-

cate that, in the acceleration phase, a phenomena
similar to the ”laminarization” takes place and thus
the turbulent energy is decreased. In the decelera-
tion period, on the other hand, the pressure gradi-
ent term P,,1 becomes negative, so the Reynolds
shear stress increases remarkably. In consequence,
the production term and the turbulent kinetic en-
ergy are increased.

T —
O Production

& Turbulent diffusion _|
X Pressure diffusion

v Viscous diffusion

O Dissipation

-=-=--Rate of change

100 . 200

Figure 12: Budget of turbulent kinetic energy in
the acceleration period (phase 8)
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Figure 13: Budget of turbulent kinetic energy in
the deceleration period (phase 12)

3.3 Visualization of the turbulence struc-
ture

Instantaneous high and low velocity regions are
shown for Figs. 15 and 16 in acceleration and de-
celeration periods, respectively. In the accelera-
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Figure 14: Budget of turbulent kinetic energy in
the deceleration period (phase 14)

tion period, the high and low speed streaks are
very much elongated. They are connected from up-
stream to downstream boundaries. The time in-
stance illustrated in Fig. 15 roughly corresponds to
the peak of the pressure gradient. It’s interesting to
see that wary fractured low pressure regions start
to propagate from the upstream region.

Figure 15: High and low speed streaks in accelera-
tion period. white: p't <-3.0, dark-gray: u'* >3.0,
light-gray: u/* <-3.0 (phase 4-5)

On the other hand, in the deceleration period,
the structures are fractured into complex segments.
The streaky structures are still observed, but it
is elongated in the spanwise direction. Moreover
many ramped structures appear not only in the wall
vicinity but also in the central region.
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Figure 16: High and low speed streaks in decelera-
tion period. white: p'* <-3.0, dark-gray: u/* >3.0,
light-gray: 't <-3.0 (phase 10-11)

The streamwise vorticity fluctuations are shown
in Figs. 17 and 18. In the acceleration period,
the vorticity fluctuations like the elongated streaky
structure seen in Fig. 15 are not observed.

On the other hand, in the deceleration period,
the vorticity fluctuations are elongated in the span-
wise direction. Further study is required in con-
junction with the vortex dynamics.

Figure 17: The streamwise vorticity fluctuations in
the acceleration period. white: w/,* <-0.2, dark
gray to light gray: w),*=-0.2 to 0.2 (phase 4-5)

3.4 Two-point correlation

To examine the adequacy of the computational
domain, two-point correlations in the streamwise



Figure 18: The streamwise vorticity fluctuations in
the deceleration period. white: wjt <-0.2, dark
gray to light gray: w/,*=-0.2 to 0.2 (phase 10-11)

direction at two y-locations, one very close to the
wall and the other close to the centerline, are shown
in Figs. 19 and 20. It indicates that they nearly fall
off to zero in the channel center ( Fig. 19 ), but not
in the acceleration phase in the wall vicinity ( Fig.
20). In this respect the streamwise domain is still
not enough large to apply the periodic boundary
condition for some of the phases.
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Figure 19: Two-point correlations in x direction

4 Nomenclature

p+ =p/ Puw2

Pj: = p/ ,D’UIT*2
Rers ; Reynolds number of steady state = u,s6/v
Re,. ;instantaneous Reynolds number = ur«6/v

tt =t/
th = unt/s
b =ufurs

T T T
phase2
~===phase4
~===phaseé6
= =—phase8
ee=me=—=phasel0
~e=—phasel2
ese=——phaseld
e=——phasel6

12.8(phase6)

Figure 20: Two-point correlations

in x direction

Table 1: Computational conditions

Grid

Staggered grid

Coupling algorithm

Fractional step method

Time advancement Viscous term(y)

Crank-Nicolson method

Other

Adams-Bashforth method

Convective term|

2™4_Consistent

Scheme

Viscous term

2™%_Central

Boundary condition

Periodic(x, z direction),
Non-slip (y direction)

Grid number

512 x 128 x 128

Computation volume (L xLyXL;)

25.66 x 26 x 3.26

Visualization volume

25.66 x § x 3.26

The grid spacing

Azt =9.0,AzT = 4.5,
Ayt =0.2~5.75

Reynolds number

Re-s =180

ud = u/urs

ub = u/urs

urs ; friction velocity at steady state(A=0)
ur« ; instantaneous friction velocity

z; =/

Yy = ursy/v

Y& = uny/v
< > ; avereged over channel section
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