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ABSTRACT

We have carried out direct numerical simulations for
the motions of small heavy particles in a uniformly
sheared turbulence. The effects of the inertia and the
drift velocity of particles on their dispersion are exam-
ined systematically by changing these two parameters
independently. It is found in the limit of zero particle
inertia that the particle dispersion both in the stream-
wise and vertical directions becomes most active for the
particles with some finite drift velocity. It is also found
that the displacement of falling particles is asymmetric
with respect to their mean displacement.

INTRODUCTION

The study of the dispersion of small heavy parti-
cles in turbulent flows is important for understanding
many natural phenomena. An example is the disper-
sion of aerosol particles or ash from volcanic eruptions
settling in the atmospheric turbulent boundary layer,
which may have significant effects on the environment
and the human health. In order to clarify the effects
of the particle inertia and the particle drift velocity due
to the gravitational force on the particle dispersion, the
motion of heavy particles in a homogeneous isotrop-
ic turbulence has been extensively studied theoretically
(Yudine, 1959, Csanady, 1963), experimentally (Snyder
and Lumley, 1971, Wells and Stock, 1983) and numeri-
cally (Squires and Eaton, 1991b, Elghobashi and Trues-
dell, 1992). Yudine (1959) first recognized the crossing
trajectories effect for particles settling under gravity;
the dispersion of falling particles is small compared with
that of the fluid particles. The motion of the particles in
a uniformly sheared turbulence have been also studied
as a first extension toward actual complex flows or as
a typical example which exhibits anisotropy (Yeh and
Lei, 1991, Liljegren, 1993, Simonin et al., 1995, Jiang et
al., 1998). Yeh and Lei (1991) and Jiang et al. (1998)
studied the dispersion of small heavy particles numeri-

cally. However, it has not yet been examined systemat-
ically how particle inertia and drift velocity affect the
dispersion.

In the present study, the motion of heavy particles
with various values of the particle inertia and drift ve-
locity in a uniformly sheared turbulence are examined
by the use of a direct numerical simulation (DNS). We
particularly focus on the cases of small effect of in-
ertia and noticeable effect of drift velocity, which are
often encountered in the atmospheric boundary layer
(Csanady, 1963).

FORMULATION

Fluid Motions

We consider the motion of small heavy spherical par-
ticles in homogeneous turbulence subjected to the mean
flow in the z; direction that is uniformly sheared in the
z direction, W = (yz2,0,0), where v is the shear rate
(see Fig.1). The equation for the fluctuating velocity,
u}, is written as

/ ! !’
% Ou, +’Ulk% = —yupdi — o +vV2u; (1)
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with the solenoidal condition duj/dz; = 0, where p is
the pressure and v is the kinematic viscosity of the fluid.
Uniformly sheared turbulence is characterized by the
Taylor microscale Reynolds number, R, and the shear
rate parameter, v*, which are respectively defined as

_ux (N} T (W) .. _
R/\(t)=7—(;) —;—(;) 7 () =T
(2)

Here, A = u'/w’ denotes the Taylor microscale. u'(=
[u']) and w'(= |V x |) represent the magnitudes of
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the fluctuating velocity and vorticity, respectively, and
an overline denotes the spatial average. For u' 2 7%,
the smallest turbulent motions can be characterized
by the Kolmogorov scales; n = (v/w')Y/?, 7 = 1/,
and v, = 7/, while the largest turbulent motions are
represented by L = u®/e, T = u'?/e, and v/, where
€ = vw'? denotes the mean energy dissipation rate.

Particle Motions

The particle is assumed to be small enough, compared
with the Kolmogorov length-scale of the turbulence. It
is also assumed the concentration of particles is small
enough such that the effect of the particles on the tur-
bulence is negligible. Taking account of the fact that
the particle (solid) density, pp, is much larger than the
fluid (air) density, ps, only the Stokes drag and the
gravitational forces are assumed to act on the particles
(Maxey and Riley, 1983), i.e., the motion of the spher-
ical particle with diameter, dp, is assumed to follow

v 1 dx

e r',,(“(x) -V+va), =V Q)
where X and V denote the position and the velocity of
the particle, respectively, and

u(X) = u(X) + ' (X) (4)

is the total velocity of the surrounding fluid. 7, (=
p,,d;‘; /18psv) represents the response time of the par-
ticle. Vi = 7,9 = (0,—vq4,0) is the drift velocity of
the particle due to the gravity, where v4 = 7,9 and
g = (0,—g,0) (g > 0) denotes the gravity.

The particle inertia is expected to be effective when
Tp is larger than the smallest time-scale of turbulence
7y, while the effect of the gravity becomes noticeable
for the drift velocity higher than the lowest turbulent
velocity v,. For a sufficiently high drift velocity, the
solid particle changes the velocity of its surrounding
fluid more rapidly than the fluid particle, which leads
to a decrease of the particle dispersion. This effect of
particle drift is called crossing trajectories effect.

In order to extract the effects of the particle drift, it
is helpful to consider the limiting case of zero particle
inertia with the fixed drift velocity at a finite value. The
particle velocity is expressed in this limit by the sum of
the fluid velocity at the particle position and the drift
velocity, that is,

V=u(X)+Vz or V =u'(X)+ V4 (5)
(Squire and Eaton, 1991b), where
V =V-u(X) (6)

is the particle velocity relative to the mean shear flow.
No preferential concentration of particles occurs in the
case of zero particle inertia, and then the moments of
the surrounding fluid velocity, u'(X), and those of the
Eulerian fluid velocity, ' (x), coincide with each other,

eg.,
(ui(X)) = v} (=0),

Here, angle brackets, ( ), denote the ensemble average.

(X (X0) = W, (7)
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Figure 1. Uniform shear flow.

Displacement Tensor

For homogeneous turbulent shear flow, dispersion will
depend on the initial vertical position of the particle,
X2(to). Hence, we consider the displacement

Yi(t) = Xi(t) — Xi(to) — diy(t — to) X2(to)  (8)

for each particle, which corresponds to the shift of the
origin of the coordinate to the initial position of each
particle. In the present study, we focused on the dis-
placement tensor of particles

Vi = ((Yi = (Yi)(¥; — (¥i))), (9)

which represents the particle dispersion. For a sta-
tionary case, the displacement of (the same kind of)
particles is simply expressed as

Yi— (1) = / (Vi = (V) + (¥ — (¥2))dr, (10)

Yi— (¥) = / Vi = (V))dr, (i=2,3), (1)

to

where the mean particle velocity, (V;), is invariant in
time and is given by

(V) = (wh(X)) — 17 ({ua(X)) — va),
(Va) = (ua(X)) — va, (V) =0. (12)

The term (Y2 — (Y2)) in eq.(10) represents the effect of
the mean shear and positive Y12 (Y22) will amplify Y11
(Y12) through this term.

Dispersion in Stationary Turbulence

For the stationary turbulence subjected to a uniform
shear, the displacement tensor, Y;;, of the fluid parti-
cles can be expressed in terms of the Lagrangian au-
tocorrelation of fluctuating velocity, u’ (see Monin and
Yaglom, 1971). Based on egs.(10) and (11), the formula
can be extended to the solid particles as

2 t
Yii(t) = —73—W22 / (2t3 —3t’r + T3)R22(0, T)dr
0

+yWi2 /t(t - T)2R21(0, T)dr (13)
0

¢
+’yW12/ (#> — 7°)R12(0, 7)dT
0



t
+2W1 / (t — 7)R11(0, 7)dT
0

Yio(t) =yWis /0 "4t - ) Raa(0, 7)dr (14)

+Wis /0 ‘¢ 7){R12(0,7) + Ra1 (0, 7)}dr
Yoot) =2Was /0 (6 = ) Raa (0, T)dr (15)
Yos(t) =2Was /0 (6 = ) Ras(0, 7)dr, (16)

where R;; is the Lagrangian autocorrelation tensor of
fluctuating particle velocity which is defined as

Rij(to,7) = (V' (to) V] (to + 7)) /Wi;.  (17)

Here,
V' =V = (V). (18)
The normalization factor was chosen as W;; =
<V,-’ ’(to)2>1/2 <Vj” (to + ‘r)2>1/2, considering the applica-
tion to non-stationary cases. Using the stationary con-
dition, we put to = 0 in egs.(13)-(16). Since the normal-
ization factors are positive, the cross components R21

and R;2 take negative values if (V;’(¢0)Vz' (to)) < 0. For
long travel times,

2 '
Yi(t) = 3 <V2"2> VTot®, Yia(t) = <V2'2> YToot®

Yao(t) = <V2"2> Taot, Yas(t)= <V3”2> Tsst, (19)

where

Ty = / Rii (0, 7)dr. (20)
0
Note the relation for 7, =0
<‘/ill‘fjll _ u;u‘; (21)

which is obtained from egs.(5),(7) and (12). It should
also be noted that the relations (13)-(16) are exact only
for stationary homogeneous turbulence. Actually, the
length scales and the turbulence energy will continue to
grow in time in uniformly sheared turbulence.

Numerical Method

Navier-Stokes equations were solved on 160° grid
points in a rectangular box of sides 47 x 2w X 27, by
using the Fourier spectral/ Runge-Kutta-Gill scheme,
starting with random and isotropic initial conditions.
The initial conditions were similar to those in Kida
and Tanaka (1994), but resolutions for both small and
large scales were improved by increasing the number of
the grid points. As was reported in Kida and Tanaka
(1994), the turbulence energy increased exponentially in
time, while the turbulence attained a statistically quasi-
equilibrium state where the second order moments of
the velocity developed similarly.

Twelve types of particles with different values of iner-
tia and drift velocity, 7, /7, (0) = 0, 0.25 and va/v,(0) =

10%
N F E
ls_ E E
N~ E F
X10%
10-2: L
107 10° 10° 107 10° 10’
(c) Y (- to) (d) Y(t-to)
10%
~ E
Fe B
N OF
10
>~ F
10-2:
10 10° 10' 00 10’
Y(2-to) Y (- to)

Figure 2. Time evolution of the displacement tensor.
(2) Ya1, (b) Yaz, (¢) Yas, (d) Yi2. wj?/” = 0.0119,
up?/4% = 0.0027, uy*/y® = 0.0060, —ujuy/y® =
0.0036.

0,1,2,4,8,16, were considered in this study. For each
combination of 7, and vg, we introduced 32768(= 32°)
particles randomly throughout the computational do-
main at the non-dimensional time of v¢ = 3. The ref-
erence time was set to yto = 4 when the particles with
inertia had fully responded to the fluid (y7, = 0.25) and
the turbulence had attained the quasi-equilibrium state.
Equations (3) were integrated for each particle with in-
ertia until v¢ = 16, using Runge-Kutta-Gill scheme with
the initial condition V{to) = u(X(t0)). Equations (4)
and dX/dt = V were solved in the same manner for the
case of zero particle inertia. The 13-point spatial inter-
polation method (Yeung and Pope, 1988) was used to
evaluate the fluid velocity at the particle position from
its neighboring grid points.

The ratio of the largest length scale of turbulence to
the length of the computational box in the z; direction,
L /4w, varied from 0.138 at vt = 4 to 0.375 at vt = 16.
kmazn (Emez = 80) was 1.85 at vt = 4 and 1.16 at
~t = 16. The time increment was set to be less than
1/10 of 7, and the Courant number varied from 0.25
at vt = 4 to 0.67 at vt = 16. The shear rate parameter,
~*, stayed in the range of 12 ~ 14 after y¢ = 4, while
the Reynolds number, R, increased from 17.8 at vt = 4
to 47.2 at vt = 16.

Finally, we note that Kolmogorov scales, 7, and vy al-
so varied in time and that 7, /7, (t) and va/v,(t) changed
by factors of 3.72 and 0.52, respectively, at the end of
the simulation.

RESULTS

Dispersion of Fluid Particles
First, we discuss the dispersion of fluid particles
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briefly. Figure 2 shows the time evolution of non-zero
components of the displacement tensor normalized by
the shear rate and the corresponding rms velocity at
the reference time yto = 4. Figures 2(a)-2(c) show that
the short-time behavior of the dispersion is proportional
to ¢2, which agrees with the theoretical prediction from
eqs.(11)-(14) that Y;; = wlul(to)(t — to)? for t —to < 1.
Since Yi2 = wiu(to)(t — to)® < 0 at an initial peri-
od, only the time evolution in a later period is shown
in Fig.2(d). The long-time behavior of Y;; is quite

different from the asymptotic formula of egs.(16). The
slopes become steeper than those predicted by eqs.(16)
owing to the increase of turbulence energy, which was
also found in Squire and Eaton (1991a), Yeh and Lei
(1991) and Shen and Yeung (1997).

Effects of Particle Drift

For particles with small inertia, the particle disper-
sion, Y;;, varies in a highly anisotropic manner by in-
creasing the drift velocity, vq4. Figure 3 shows the time
evolution of Y;; for the limiting case that 7, = 0. They
were normalized by the corresponding values for the
fluid particles to emphasize the modulation due to the
effect of particle drift. The drift velocity are increasing
from Line A to Line F.

It is observed from Fig.3(c) that the dispersion in the
x3-direction, Y33, decreases with an increasing of the
drift velocity due to the crossing trajectories effect. At
large values of vg, doubling of the drift velocity (e.g.
Line F against Line E) almost leads to the reduction by
half of the dispersion in agreement with the asymptotic
behavior, Ya3 o v !, for vg 3> u' (Csanady, 1963).

The dispersion in the z; directions, Y22, also decreases
initially with an increase of the drift velocity. In the
later period, however, it increases from that in the case
of vg = 0 as the drift velocity increases, takes maximum
at vq/v,(0) = 4 (Line D) and decreases with further
increase of v4. It should be noted that the magnitude
of vertical fluctuating velocity, ub, is 1.87 ~ 5.73 times
larger than v,(0) and comparable with the value of va(=
4v,(0)) at which the dispersion is the most activated.

The dispersion in the z; direction, Yii, evolves
in a similar way as Ya2. Though the rela-
tive magnitude Yi;(solid particle)/Y1:(fluid particle)
may behave as Toa(solid particle)/Ts2(fluid particle)
= Yaa(solid particle)/Y22(fluid particle) for sufficiently
large values of ¢ as is predicted from egs.(19) and (21),
the enhancement of the particle dispersion is much more
noticeable for Y11 than Y22 at y(t —to) =~ 10.

As mentioned above, Y12 is initially negative, and
then becomes positive in a later period. The time at
which it becomes positive is earlier for larger values of
the drift velocity. This is a direct consequence of the
reduction in Lagrangian velocity autocorrelation due to
the effect of the drift (see below). In the later peri-
od, the maximum enhancement of Yi2 is achieved at
vd/v,,(O) =4 as Yll and Yzz.

Effects of Particle Inertia

Figure 4 shows the time evolution of Y;; for the
particles with finite inertia (75/7;(0) = 0.25). As in
Figs.3(a)-3(d), it is normalized by the value for the flu-
id particles. The values of Yj; at ¢ = ¢o shown in
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Figure 3. Time evolution of the displacement ten-
sor for 7, = 0. (a) Y11, (b) Y22, (c) Yas, (d),(e) Y12.
A: vg/v,(0) = 0 (fluid particle), B: va/v,(0) = 1, C:
va/vn(0) = 2, D: va/vy(0) = 4, E: vg/v,(0) = 8, F:
va/vq(0) = 16. vto = 4.

Figs.4(a)-(c) represent the relative magnitude of the

fluctuating particle velocity (V;"V;") /ulu;. In the ab-
sence of the gravity (see Lines A), it is found that the
initial dispersion (ox (V7'V;') (t — to)?) is enhanced for
the streamwise component, but is reduced for both ver-
tical and spanwise components by the effect of particle
inertia. The relative dispersion increases later except
the streamwise component which shows a temporary de-
crease. The increase of Y33 due to the effect of particle
inertia was also found in Yeh and Lei (1991).

The increases in Yi1, Y22 and Y12 due to the effect of
particle drift, which was observed for 7, = 0, are also
found for the particles with inertia. However, Y22 for
the particles with vg/v,(0) = 4 (Line D) is less than
that for the particles with v4 = 0 (Line A) as opposed
to the case of 7, = 0. On the other hand, Y11 and Y12
for the former (Line D) are still larger than those for
the latter (Line A) at this value of particle inertia.
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Figure 4. The same as figure 3 but for 7, /7,(0) = 0.25.

Finally, we note that the average settling velocity,
| (V2) |, is greater than the drift velocity (not shown) as
in isotropic turbulence (Wang and Maxey, 1993).

Lagrangian Velocity Autocorrelation

Although the relations in eqgs.(13)-(16) are not exact
for the non-stationary turbulence studied here, the La-
grangian velocity autocorrelation is found to provide
useful information for the understanding of dispersion
phenomena. In Fig. 5, the Lagrangian velocity auto-
correlation is shown for the fluid particles (solid lines)
and for the solid particles with 7, = 0 and va/v,(0) = 4
(broken lines) which correspond to Lines D in Fig.(3).
In Fig.5(d), Ro1 and R;2 are denoted by the thick and
thin lines, respectively. For the fluid particles the cor-
relation is the strongest in the z; direction and is the
weakest in the o direction. It is interesting that the
correlation in the z» direction takes negative values
around (t — to) = 4.5 (Squires and Eaton, 1991a).

It is seen from Fig.5(a) that the correlation of the
streamwise velocity component is significantly reduced
due to the effect of particle drift, though this decrease

n éA P
Y (2-t0)

Figure 5. Lagrangian velocity autocorrelation function.
(a) Ru1, (b) Rs2, (¢) Ras, (d) R21, Ri2. vto = 4.

o..

in R11 may be irrelevant to the long-time behavior of
the streamwise component of dispersion (see eq.(13)).
The other transverse component, R3s, also decreases
due to the particle drift. The negative region found at
~(t—to) = 3 is characteristic of the crossing trajectories
effects, which was also found in an isotropic turbulence
(Squires and Eaton, 1991b).

The vertical component, Rz, for the solid particles
decreases rapidly in an initial period compared with
that for the fluid particles. In the later period, how-
ever, it decreases more slowly than that for the fluid
particles. The increase of Y22 due to the particle drift
shown in Fig.3(b) may be caused by this slow decay of
the correlation.

It is seen from Fig.5(d) that the particle drift
increases Ra; and decreases Ri2. The increase of Rp; is
found to be much larger than the decrease of Ri2. This
may be considered the main reason for the enhancement
of Y11 due to the effect of particle drift (see Fig.3(a)),
because the suppression of Y1; which is caused by the
second term on the rhs of eq.(13) is weakened by the
increase of R21. A continuous stay of particles in a re-
gion of negative uju> will suppress the growth of Y1,
however falling particles can be suspended in a region
of ujuy < 0 for a shorter duration compared with fluid
particles.

For the case without gravity, the particle inertia
makes the correlation stronger except for the stream-
wise component, R1; (figure omitted). The increases of
Y22 and Yas, and the initial decrease of Y12 compared
with the fluid particles may be attributed to this in-
crease of the correlation.

Asymmetry of Particle Displacement
Figure 6 shows the time evolution of the skewness
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Figure 6. Skewness factors of Y1; and Ya..

0.5

Figure 7. Contribution to R22 from particles with
u2(X(t0)) > 0 (R22™) and ua(X(t0)) <0 (R227) -

factors of Y11 and Y2, for the particles with 7, = 0 and
va/vn(0) = 4. The skewness of Y2 increases initially,
takes the value about 0.2, and decreases gradually in
the later period. The skewness of Yi; initially takes
negative values, and then increases up to about 0.3. It
can be seen that the skewness of Y1; reflects that of Y22
and the sign of the correlation between Y1 and Y2 (Y12).

This asymmetry of particle displacement may be re-
lated with the fact that a particle trapped in a region
of uj > 0 tend to stay there for a longer time than that
in a region of u, < 0. Figure 7 shows the contribu-
tions to the Lagrangian velocity autocorrelation, R22,
from the solid particles which were initially located in
the regions of u > 0 (Rz2™, solid line) and up < 0
(R22™, broken line). It is seen from the figure that the
correlation drops more slowly for the particles which
were initially located in up-flow regions than those in
down-flow regions, which may lead to the skew of Y2.

CONCLUSION

We have carried out DNS for the dispersion of small
heavy particles in a uniformly sheared turbulence. It is
found for particles with small inertia that the particle
dispersion, Y;;, varies in a highly anisotropic manner
by increasing the drift velocity. The particle dispersion
in the spanwise (z3) direction decreases monotonously
with increasing drift velocity due to the crossing trajec-
tories effect, while the dispersion both in the stream-
wise (1) and vertical (z2) directions is most activated
at some finite drift velocity close to the vertical fluc-
tuating velocity u5. The enhancement of the particle
dispersion is much more noticeable for Y1: than Y2 at
intermediate times, since the cross component of the
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Lagrangian velocity autocorrelation Ra;, which plays a
role to suppress the growth of Y11, is weakened by the
effect of the particle drift. For 7, < 75, the displace-
ment of falling particles is asymmetric with respect to
its mean value, which can be associated with the ten-
dency that particles stay in a region of u5 > 0 for a
longer time than in a region of u5 < 0.
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