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ABSTRACT

Particle-driven gravity currents are examined by
means of two-dimensional numerical simulations based
on highly accurate integration schemes for the fluid-
phase equations. Two different approaches are em-
ployed to describe the particulate phase, namely a Eule-
rian treatment and a Lagrangian particle-tracking tech-
nique. Good agreement is demonstrated between the
two approaches for small particle Stokes numbers.

INTRODUCTION

Gravity currents, which form when a heavier fluid
propagates into a lighter one, are frequently encoun-
tered both in the environment as well as in engineering
applications (Simpson, 1997). Particle-driven gravity
currents form a special class of these flows, as their den-
sity difference is caused by differential loading with sus-
pended particles. Typical examples of such flows in geo-
physical applications are turbidity currents in oceans or
lakes, and powder snow avalanches. To date, particle-
driven gravity currents have mostly been investigated
experimentally or on the basis of the shallow water
equations (Bonnecaze et al., 1993). The present re-
search is intended to provide further insight into these
flows by conducting two-dimensional (2D) direct nu-
merical simulations (DNS).

PROBLEM FORMULATION

In fundamental research on gravity currents a pro-
totype configuration is often considered, the so-called
lock-exchange flow, in which a plane channel is filled
with a fluid of constant density. A vertical splitter plate

initially separates the particle-laden from the clear fluid
(see Simpson, 1997). When the plate is withdrawn, a
mutual intrusion flow develops. In the current report
the lock-exchange configuration is studied by means of
highly accurate DNS, i.e. simulations in which all rel-
evant time and length scales in the flow are fully re-
solved. The disparity between the largest and smallest
scales, which determines the numerical resolution re-
quired, depends on the ratio of buoyancy forces and
viscous forces. This ratio will generally be expressed in
terms of a Grashof number Gr=(uyh/v)? here, where
up is the buoyancy velocity based on the channel half-
height h as the characteristic vertical length scale.

In our simulations the motion of the fluid phase is
governed by the incompressible Navier-Stokes equations
which are augmented by a forcing term that accounts
for the effect of the particles on the fluid. The method
used for the numerical integration of the NS equa-
tions employs a spatial discretization based on spec-
tral and high-order compact finite-difference schemes,
along with finite differences in time. A detailed descrip-
tion of the computational approach is given in Hértel
et al. (1997). We focus on dilute concentrations here,
for which particle-particle interactions can be neglected.
Moreover, the particles are assumed to be monodisperse
and of spherical shape.

NUMERICAL DESCRIPTION OF PARTICLES

Two different approaches for the description of the
particles are taken. In the first approach we assume
that the particles have a characteristic time scale much
shorter than typical time scales of the flow, i.e. a very
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Figure 1: Particle-driven lock-exchange flow at a Grashof number of 2- 107 (in z1 only half of the flow domain is
shown). Flow visualized by isocontours of the instantaneous particle concentration at different times of the simulation.

small Stokes number St=d2p,us/(18ph), where d, and
pp are the diameter and density of the particles, respec-
tively, and p is the viscosity of the fluid. The particle
velocity then is identical to the fluid velocity plus a
constant settling speed (Maxey, 1987) which can be de-
rived from a balance of the gravitational force and the
viscous Stokesian drag of a single free-falling sphere.
The particle concentration field is treated in a Eulerian
manner in this approach and its temporal evolution is
described by a transport equation which also accounts
for hydrodynamic diffusion effects (see Davis and Has-
sen, 1988). The discretization used for this evolution
equation corresponds to that employed for the velocity
field.

In the second approach particle inertia is taken into
account which allows to examine particles with larger
characteristic time scales (i.e. finite Stokes numbers).
In this case no continuous equation is solved, but a
large number of particles are individually tracked in a
Lagrangian fashion. We employ a simplified version of
the equation for the particle motion given by Maxey
and Riley (1983), retaining only the viscous drag and
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the gravitational force due to density differences which
are dominant for our application (for a discussion of the
relative importance of forces acting on suspended parti-
cles see Lazaro and Lasheras, 1989; Pan and Banerjee,
1996). As pointed out before, the influence of the par-
ticles on the fluid phase is modeled by adding a source
term on the right hand side of the momentum equa-
tions for the fluid. Since in our case the only cause
for the fluid motion is the presence of a heavier par-
ticulate phase, a two-way coupling between fluid and
particles is of course essential. Each of the individually
tracked numerical particles represents a cloud of phys-
ical particles, and its range of influence extends over
several neighboring grid points. The shape function of
the particle force is a Gaussian curve of width o which
typically is of the order of the mesh spacing. The ini-
tial distance between the particles in the suspension we
chose to be at most o/2. To solve the particle equa-
tions the fluid velocities at the particle locations are
needed which are obtained from the velocities at the
mesh points by forth-order accurate Lagrangian inter-
polation (see Martin and Meiburg, 1994). More details
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Figure 2: Distribution of passive markers in lock-exchange flows with Gr=2-107 in a channel of finite length (initial
configuration as in Fig. 1). Shown are results for a very late stage of the simulation (¢=500), when the flow has almost
come to rest. a: particle-driven gravity current. b: density-driven gravity current.

on the basic equations, and the specifics of the numer-
ical implementation will be summarized in a separate
publication that is currently being prepared.

RESULTS FOR EULERIAN APPROACH

In Fig. 1 the temporal evolution of a lock-exchange
flow is illustrated by means of isocontours of the instan-
taneous particle concentration field. The Grashof num-
ber of the flow is 2-107 and the particles have a dimen-
sionless settling velocity of 0.02 (non-dimensionalized
by up). At time t=0 the suspension, i.e. the particle-
laden fluid, is confined to a small portion of the chan-
nel on the left. To enable a direct comparison between
simulations and laboratory results, this initial set-up is
similar to the one used in the experiments of Bonnecaze
et al. (1993). For t>0 a flow develops which is charac-
terized by two fronts that travel in opposite directions.
Between t=2 and 4, the light front in the upper channel
half encounters the left boundary and is reflected, which
leads to a strong downward motion. At later times,
when the flow is increasingly affected by the settling
and sedimentation of particles, the pronounced head
of the right-propagating front gradually disappears and
the horizontal propagation speed decreases. In conse-
quence, the front comes to rest before it encounters the
right wall of the channel located at x1=27. Also, it is
seen that the Kelvin-Helmholtz-like billows at the inter-
face develop into a system of dipolar vortices that tend
to travel upward. This vertical motion leads to intense
mixing of the fluid across the full channel height which
becomes obvious from Fig. 2a where the distribution
of passive markers is shown at a very late time of the
simulation. The markers were added to the particle-
laden fluid at time t=0 and indicate the dispersion of
the interstitial fluid during the flow development. For
comparison, Fig. 2b shows the corresponding distribu-

tion of markers that were added to the heavier fluid in
a density-driven lock-exchange flow (see e.g. Rottman
and Simpson, 1983). Here they are seen to collect in
the lower half of the channel. The reason is that in this
case the vertical mixing is strongly damped in the late
stages of the flow when a stably stratified situation of
heavy fluid beneath light fluid has developed.

More detailed insight into the dynamics of the flow
shown in Fig. 1 can be gained from the temporal devel-
opment of the integrated potential and kinetic energy
which is depicted in Fig. 3. Also, the time integral of
total viscous dissipation is included in this figure. A
rapid transformation of potential energy into kinetic
energy is seen during the start-up phase, when the flow
is strongly accelerated and viscous dissipation is still
weak. In the late flow stages, however, this process
can be partly reversed, and a certain amount of parti-
cles may remain suspended for rather long times. For
t>100, say, when only a small fraction of the initial par-
ticles are still left in the fluid, the flow develops into an
equilibrium state, in which the increase in viscous dis-
sipation equals the decay in kinetic energy. From Fig. 3
it is clearly seen that the limit value the integrated dis-
sipation approaches for large times remains well below
the initial potential energy. It can be estimated from
the curve that only 40-50% of the initially available po-
tential energy will be converted into the gravity-current
flow, while the remainder is “lost” due to particle set-
tling. It must be kept in mind, however, that the results
in Fig. 3 were obtained with a two-dimensional simula-
tion model. To what extent these findings apply to fully
three-dimensional flows is currently being examined.

To illustrate the influence of viscous diffusion on the
flow, Fig. 4 gives results for the time history of the front
position z ¢ for three simulations with different Grashof
numbers. zr is defined as the foremost point of the pro-
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Figure 3: Time history of potential energy (solid line)
and kinetic energy (dashed line) integrated over the flow
domain (same flow as in Fig. 1). The dotted line gives
the amount of energy lost due to viscous dissipation.
Results given in per cent of the initial potential energy.
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Figure 5: Distribution of particle deposit on the lower
boundary (z3=—1) at different times of the simulation
(same flow as in Fig. 1). The dashed line gives the final
particle deposit obtained in laboratory experiments
conducted by Bonnecaze et al. (1993).

pagating current, and is most easily determined from
the particle concentration field. Although the settling
speed is identical in all cases, it is seen that the fronts
spread faster for higher Grashof numbers. This result
is to be expected, since for increasing Grashof numbers
the retarding forces due to viscous friction in the flow
diminish. The crossing of the curves that is seen for the
two lower Grashof numbers at about t=30 has proba-
bly little significance, since beyond times t~25, when
most of the particles have already settled out, the front
position is not well defined anymore.

Included in Fig. 4 are experimental data of Bonnecaze
et al. (1993) for the same set-up as used in our simu-
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Figure 4: Time history of the front position = for three
simulations with different Grashof numbers. The flow in
Fig. 1 is given by the long-dashed line. Solid line:
experimental result of Bonnecaze et al. (1993).

lations, and a Grashof number of Gr=2-10%. At early
times when only a few particles have sedimented and
the front speed is virtually constant, the corresponding
simulation agrees closely with the experimental result.
However, after about 10 time units, when the front
speed starts to decrease, the curves begin to deviate
and the front in the experiment advances more rapidly
than in the simulation. The reason for this discrepancy
is not fully clarified so far, but we suspect that it can
be attributed mainly to the fact that silicon carbide
particles were used in the experiment which, in con-
trast to the numerical particles, are not monodisperse
and not of spherical shape. As shown e.g. by Gladstone
et al. (1998), the presence of only a little amount of
smaller particles in the suspension can cause a front to
propagate much further than in the case of a strictly
monodisperse particulate phase. Also, the assumption
of a Stokesian settling velocity may not be justified, if
the particles are of strongly non-spherical shape (see
Hallermeier, 1981).

Another possible reason for the deviations between
experiment and simulation in Fig. 4 is the restriction
to a two-dimensional flow in the present simulations.
However, for density-driven lock-exchange flows Hértel
et al. (1999) found that integral parameters like the
front speed are very little affected by three-dimensional
effects and can accurately be captured by a 2D simu-
lation. We assume that also in the present case 3D ef-
fects are not of central importance for the front speed,
but we will examine this point in more detail by three-
dimensional direct simulations in the next stage of our
project.
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Figure 6: Particle-driven lock-exchange flow simulated with a Lagrangian approach for the particulate phase. Results for
different Stokes numbers and different core sizes o. The settling velocity of the particles and the Grashof number are
respectively 0.05 and 2-107 in all cases. a: St = 0.01, o = 0.1. The solid lines gives isocontours of the particle

concentration of a simulation with a Eulerian particle description. b: St = 0.01, 0 = 0.03. c¢: St =0.1, 0 =0.1.

A further comparison of our simulations with the
experiments of Bonnecaze et al. (1993) is provided in
Fig. 5. The curves show the distribution of the dimen-
sionless particle deposit over the channel length at dif-
ferent non-dimensional times, again for the flow shown
in Fig. 1. At the latest time (¢=100), about 90% of all
particles have already settled out. Included in the figure
is the experimental sedimentation profile of Bonnecaze
et al. for a flow with an identical dimensionless settling
velocity, but a slightly higher Grashof number. Both
experiment and simulation consistently show a weak
increase of the particle deposit with z;, followed by a
rapid decay for larger distances from the left boundary.
However, in the simulation the particles settle out faster
than in the experiment which may indicate that in the
experiments a significant resuspension of particles from
the bottom wall back into the fluid takes place. This ef-
fect is not yet accounted for in our present simulations.

RESULTS FOR LAGRANGIAN APPROACH
For the study of gravity currents driven by very small

particles a Eulerian approach for the description of the
particulate phase is most efficient. However, if one con-
siders particles with larger Stokes numbers (St>0.01,
say), inertia effects need to be taken into account in
the description of the particle motion, and a Lagrangian
tracking technique must be employed. The potentially
strong effect of changes in the Stokes number on the
flow structure is illustrated in Fig. 6, where results are
given for particles with a dimensionless settling velocity
of 0.05 and Stokes numbers of 0.01 and 0.1. In contrast
to the cases discussed previously, the interface between
clear and particle-laden fluid was located in the mid-
dle of the channel in these simulations, which avoids
an early reflection of the left-propagating front at the
boundary. Concerning the particle effect on the fluid
phase, it should be mentioned that we supplement near-
boundary particles with their mirror images in order to
avoid a spurious gradient in the particle concentration
field in the vicinity of the boundaries. We found this to
be essential to obtain accurate results, since neglecting
the mirror images results in a front speed which is too
low by about 5% in our case.
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It is seen from Fig. 6 that for a Stokes number of
0.01 the particles still follow the fluid motion closely
and the fine-scale vortical structures that develop at
the interface can be found from the particle field. For
comparison, we have included in Fig. 6a results from a
simulation with a Eulerian description of the particle
concentration field for the same dimensionless settling
velocity. Only small differences can be seen between
this simulation and the Lagrangian approach, demon-
strating that inertia effects are not yet substantial at
Stokes numbers of 0.01. The situation is radically dif-
ferent, though, for Stokes numbers of the order of 0.1
(Fig. 6¢). In this case the particles can no longer follow
the rapid changes in flow speed at the foremost part and
the interface, but settle out continuously while travel-
ing slowly downstream. As a consequence, a distinct
front no longer develops.

In the Lagrangian approach one needs to specify the
core size o of the numerical particles, i.e. the width
of the region over which the influence of an individual
numerical particle and the associated source term are
distributed on the computational mesh. In general, a
lower limit to o is set by the mesh size A, since par-
ticles with a diameter smaller than A will “disappear”
on the computational grid, if they are located in the
center of a mesh cell. On the other hand, it is neces-
sary that the core size of the particles is large enough
to make sure that within the suspension the influence
regions of neighboring paricles overlap; otherwise the
resulting particle concentration field is not sufficiently
smooth. This makes clear that the minimum number
of particles used, and thus the computational expense,
depends directly on the core size of the particles. From
our simulations we found that the value of o may have
a discernible influence on the flow evolution. This is il-
lustrated in Figs. 6a and 6b where results are depicted
for simulations with different core sizes of the compu-
tational particles. In Fig. 6a the core size is 0.1 times
the channel half height, while in 6b computational par-
ticles with a width of 0.03 were employed. In the latter
case a much more detailed resolution of the interface
is achieved and it is also seen that the front spreads
slightly faster in this case. These results suggest that
distributing the particle force over several grid points
acts similar to hydrodynamic diffusion in the particle
concentration field (note, however, that we have not
implemented an explict diffusion term in the particle
equation). A careful analysis of the influence of the
core size and its relation to the numerical mesh size is
an important issue, and we will address this point in
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more detail in the next stage of our research project.
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